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cooperative situational awareness (CSA) problem of multi-UAV systems in the scenario of crossing a three-
dimensional (3D) obstacle belt while no prior information of obstacles is required. First, the distribution
models of the multi-UAV system and the obstacles are built based on two reference frames. Second,

Keywords: various types of uncertainties are characterized, which reflect an urgent need for CSA. Thus, a centralized
Multi-UAV system CSA scheme is proposed and conducted on multiple UAVs and at different times, and the Dempster-Shafer
Situational awareness (D-S) evidence theory is introduced to address information uncertainties and achieve high-accuracy
Information fusion information fusion. Next, to deal with the high-conflict evidence situations that are common in practice,
Modified D-S evidence theory a modified D-S fusion method is further developed. A modified Pearson coefficient is utilized to measure

the correlation between different pieces of evidence. Both information credibility and uncertainty are
taken into account to evaluate the evidence from different perspectives, and a novel evidence weight
assignment method is presented to treat high-conflict situations. Numerical simulations validate the
effectiveness of the proposed CSA method. Compared to existing studies, the proposed method is
applicable to different trust paradoxes and achieves the best performance among various fusion methods.

© 2023 Elsevier Masson SAS. All rights reserved.

1. Introduction that all nodes should periodically broadcast a precise participant
location and identification message (e.g., position and state).
Although numerous studies have applied UAVs for SA, the
strong uncertainty in the environment can easily lead to inaccu-
rate SA results [8]. Moreover, in the perception system of UAV,
the quantity and quality of detection data directly affect the ef-
fectiveness of SA, thus suggesting the significance of information
acquisition and processing [9,10]. In [11], a UAV-based situational
awareness system using deep learning was built to detect and lo-
cate people and recognize their actions in near real-time. However,
the accuracy of action recognition was affected by the accuracy
of the person detection, resulting in a low mean Average Preci-
sion (mAP). Furthermore, single visual camera, which is commonly
used as a device for situational awareness, has limited ability to

Situational awareness (SA) is the perception of the elements in
the environment within a volume of time and space [1], which
lays a solid basis for UAV networks to implement a wide variety
of missions. Accurate SA is an essential challenge to unleash UAV’s
potential for practical applications [2]. Moreover, SA is critical for
the reliable operation of almost all systems and domains [3-5]. In
the aviation industry, SA is one of the vital elements in pilot train-
ing for flying, controlling, and maintaining [6]. The requirements
for reliable UAV control and SA are explained in [7], which states
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Nomenclature
Di Position of UAV i in earth-fixed coordinate frame
D; Obstacle j

Py(®;) and p.(P;) Position of obstacle j in body-fixed and
earth-fixed coordinate frame
8; =1[6:, @i, ¥i1T Attitude angle set of UAV i

Tpe Translation vector

Rpe Rotation matrix

v; Velocity vector of UAV i

L Superior limit of visual distance L

o Superior limit of visual angle «

® Discernment frame

m(®) Basic probability assignment function

k Conflict coefficient

P(L) Correlation between detection accuracy and visual dis-
tance

P(x) Correlation between detection accuracy and visual an-
gle

Pa(L, ) Overall detection accuracy

m(L¢, ;) Basic probability assignment function of information
fusion

p1(®1) Position of detected by UAV I

mi(®q) Detection accuracy of detected by UAV I

P133(®1) Fused position of ®; among UAV I, II and III

p'1(®q) Position of detected at time tq

m'1(®1) Detection accuracy of ®; detected at time t;

P1%253(dq) Fused position of ®; among time t1, t; and f3

pm(m;, mj) The modified Pearson coefficient between evidence
m; and m;

Sup(m;) Support degree of evidence m;

Crd(m;) Credibility of evidence m;

Un(m;) Uncertainty degree of evidence m;

tional awareness (CSA). As a key factor in multi-UAV cooperative
operation, the CSA of multi-UAV systems has also attracted exten-
sive attention in relevant fields [12-14], which requires that the
information obtained by all UAVs achieve a consensus with true
environmental information [15].

The CSA is capable of reducing or eliminating the effect of
uncertainty through the interaction of information, i.e., the multi-
sensor information fusion. Multi-sensor information fusion tech-
nology refers to processing the data transmitted from different
information sources, combining the above data according to cer-
tain rules, and then making efficient and accurate decisions [16].
It is a rapidly developing discipline and has been applied to a
wide variety of scenarios including the SA [17-19]. Theoretical
multi-sensor information fusion methods include the weighted av-
erage method [20], Kalman filter method [21], Bayesian estimation
method [22,23], D-S evidence theory [24-26], etc. Nevertheless,
a common feature of the most existing work on CSA is to assume
the environment information to be a priori and ideal airborne sen-
sors, while the uncertainty caused by unknown obstacles, sensor
aging, and interference from other factors in CSA often leads to ab-
normal information and inaccurate CSA results. Ref. [27] presented
a multi-UAV cooperation method via workflow, in which the au-
thors clarified that the situational synchronization of detected tar-
gets among UAVs could be achieved through limited information
interactions, but the information uncertainty was not thoroughly
considered. In [15], a multi-UAV CSA consensus three-level model
was built considering the information uncertainty; however, this
kind of uncertainty was only reflected in the reference matrices
without specific modeling and characterization. It is noteworthy
that though Bayesian estimation method is also capable of solv-
ing information uncertainty, it requires previous data as a priori
probability to obtain a novel probability, which is not applicable
in numerous cases [28]. In contrast, D-S evidence theory is capa-
ble of fusing uncertain information when the prior probability is
unknown and representing the probability of uncertain problems
using the basic probability assignment, thus indicating the superior
fusion performance of the theory. Due to its advantages, D-S evi-
dence theory has been employed in a wide variety of areas to solve
related problems, especially in the CSA field. In [29], a situational
assessment mathematical model based on the D-S evidence the-
ory has been studied. Moreover, D-S evidence theory is combined
in [30] to improve the accuracy of ship target type recognition,
which is greatly associated with battlefield SA. Considering its ex-
cellent performance in dealing with sensor uncertainty, the D-S

evidence theory is adopted as the multi-sensor information fusion
method in this study to achieve CSA of multi-UAV systems.

In addition, though the conventional D-S evidence theory is ca-
pable of dealing with the uncertainty in CSA, it still has limitations
in trust paradox, one-vote rejection, etc. The trust paradox reveals
that contrary results may be obtained in the presence of high-
conflict evidence. To address the above problems, scholars have
improved the conventional D-S evidence theory from different per-
spectives [31], which are mainly divided into two categories: the
improved D-S combination rules and the modified conflict evi-
dence methods. Some researchers think that unreasonable results
are mainly caused by the normalization step of D-S combination
rule. Thus, they optimize the D-S combination rule by giving ev-
idence conflicts to a certain subset with a specific proportion,
which is called the improved D-S combination rule. In [32], the
uncertain domain is considered an incomplete set and conflicts are
given to an unknown proposition. This method solves paradoxes
theoretically, whereas it increases the uncertainty of synthesis re-
sults by introducing an unknown proposition. Yager in [33] allotted
conflicts directly to the uncertain domain. However, it can only set-
tle paradoxes efficiently with two evidence sources, and it is too
conservative to admit the useful information that exists in con-
flict evidence. On this basis, an improved method is developed by
dividing evidence into support evidence and conflicting evidence,
which solves the problem of unequal information quantity in ev-
idence [34]. Other scholars consider that paradoxes are mainly
caused by unreliable evidence. Thus, instead of changing the D-S
combination rule, this type of method modifies evidence before
combining evidences, which is called the modified conflict evi-
dence method. To be specific, an improved method is put forward
by considering the average mean of evidence as a novel evidence
before evidence combination [35]. Note that the idea only aver-
ages the evidence without considering their differences. Thus, the
paper [36] proposed a fusion method through calculating novel ev-
idence by the weighted sum of evidence. To combine high-conflict
evidence efficiently, a novel method is developed in [37] through
the introduction of sensor priority and evidence credibility, thus
enhancing the reliability of the system.

Motivated by the above observations, this study aims to present
a CSA approach based on multi-sensor information fusion. The dis-
tribution models of the multi-UAV system and obstacles are estab-
lished considering multiple uncertainties based on the background
of the multi-UAV system detecting an obstacle belt. Subsequently,
the D-S evidence theory is applied and modified into the infor-
mation fusion process to deal with the uncertainties and fuse the
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information from the multi-UAV system, such that a more accurate
CSA is achieved. The main contributions of this study are presented
as follows:

1. A novel centralized CSA scheme based on the idea of informa-
tion interaction and fusion is proposed and applied to coop-
erative detection scenarios. No prior information for obstacles
is required, i.e., the obstacles can be randomly distributed in a
given 3D space. Compared to SA by a single UAV, the proposed
CSA scheme enables the multi-UAV system to detect more ob-
stacles, while greatly improving the overall detection accuracy.

2. Unlike previous works [15,27] that ignored the uncertainties
thoroughly during the detection process, the proposed CSA
scheme integrates various typical uncertainties including the
environmental uncertainty, detection uncertainty, and informa-
tion uncertainty. The D-S evidence theory is introduced and
conducted on multiple UAVs and different times to fuse the
uncertain information and obtain the detection results with
high accuracy.

3. To deal with the aforementioned uncertainties, a modified CSA
scheme based on the modified Pearson correlation coefficient
is further presented. Thanks to the comprehensive consider-
ation of evidence credibility and uncertainty, the proposed
modified CSA scheme is applicable to treat high-conflict sit-
uations and outperforms existing research methods [33-35,37]
in solving various trust paradoxes.

The remaining sections of the paper are arranged as follows.
The coordinate frames and their transformation are defined in Sec-
tion 2, while the mathematical models of UAV and obstacles are
built considering the detection uncertainty and the framework of
the D-S evidence theory is established. Section 3 describes the
overall process of multi-UAV system CSA among multiple UAVs and
different times, while the defects and modifications of the conven-
tional D-S evidence theory are elaborated. Three simulation cases
are conducted, and numerical results are displayed in Section 4.
Lastly, conclusions and future work are presented in Section 5.

2. Preliminaries

2.1. Coordinate definition and transformation

Definition 1 (Body and earth-fixed coordinate frames). To start with,
two reference frames are defined, i.e., the body-fixed coordinate
frame and the earth-fixed coordinate frame [38]. As depicted in
Fig. 1, the body-fixed coordinate frame is a moving coordinate
frame which is fixed to the UAV. The origin Oy is chosen to coin-
cide with the center of gravity, and Xp, Y, Z;, represent the X,Y,Z
axis of the frame, respectively. Note that the positive direction of
X} is the head of UAV, the Y, axis is perpendicular to the horizon-
tal plane, and the Z, axis is perpendicular to the X,0,Y; plane.
The earth-fixed coordinate frame, on the other hand, has its ori-
gin O, fixed to a specific point in space, while X,, Y, Z, represent
its three axes. The motion of UAVs and the location of obstacles
are described in this earth-fixed coordinate. For convenience, we
abbreviate the obstacle as OBS.

Let p; = [p¥, p{. p?]" € R be the position of UAV i in earth-
fixed coordinate frame, while the position of obstacle ®; in
body and earth-fixed coordinate frames are defined as p, (<I> j) =

[P} (1), P} (@) P} ()] €R® and p, () = [p¥ (®;) . P (@),
pZ(®)) ]T € R3, respectively. In addition, &; = [¢, 6;, ¥i]T € R3 de-
notes the attitude angles set of UAV i, where ¢;,6; and ; are
roll, pitch and yaw angles of UAV i, respectively. The solid blue
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Y, Pi®D) p @) 7 ‘ J/ Y

Earth-fixed coordinate frame ~ P.(®))

Fig. 1. Body and earth-fixed coordinate frame. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Transformation from body-fixed coordinate to earth-fixed coordinate.

line represents the transformation between the body-fixed coor-
dinate frame and the earth-fixed coordinate frame, which will be
precisely described in Fig. 2.

Remark 1. The initial information available for ground base station
includes the position of UAV in earth-fixed coordinate frame p;,
the attitude angle set §; and the position of obstacle in body-fixed
coordinate frame pj (dDj), while the obstacle position in earth-
fixed coordinate frame p, (d>j) requires the coordinate transfor-
mation.

To describe the obstacles in a unified coordinate frame, the ob-
stacle position should be converted from body-fixed coordinate
frame to earth-fixed coordinate frame, which is shown in Fig. 2
(the meanings of the symbols in Fig. 2 are the same as those
in Fig. 1). As depicted in Fig. 2, the coordinate transformation is
achieved through a translation and rotation, which is written as
follows:

Pe (q)j):Tbe'Rbe (1)

where the translation vector Tp, = p (fD j) + p;, and the rotation
matrix Rp. can be calculated by attitude angles.

2.2. Multi-UAV system and obstacle model

Consider n(n > 2) UAVs conducting a detection task in R3.
The configuration of the multi-UAV system is denoted by p =

[ﬂ,p;,...,pﬂT € R®, and the kinematics of the UAV can be

. T )
expressed as v; = p;, where v; = [v¥, v}, v?]’ € R® is the veloc-

ity vector of UAV i. The m(m > 2) obstacles ® = {®q, 3, -, Op}
are spatially distributed with p(®) = [p'(®1), p" (P2),...

pT(QDm)]T € R®™ in a given 3D space. Note that the formation of
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Depth
Camera

S~k Right
~~._ Camera o

Fig. 3. Obstacle detection by depth camera.

the multi-UAV system is fixed, while the obstacles are randomly
distributed in a given 3-D space. In addition, the following as-
sumptions are made.

Assumption 1. The respective UAV carries a limited-capability
depth camera which can detect the 3D coordinate of the obsta-
cle within a perception range, as shown in Fig. 3. The detected
information includes p, (d),-), relative distance L and visual angle
o, with b/2 representing the focal length of the camera.

Assumption 2. Detection uncertainty occurs during the process of
perception, especially when an obstacle deviates from the center
of sight and is far away from the UAV’s depth camera.

Assumption 3 (Scenario assumption). We consider several UAVs fly-
ing forward at speed v; and perceiving an obstacle belt consist-
ing of multiple obstacles, whereas all UAVs are distributed in the
same plane. In accordance with Assumptions 1 and 2, the respec-
tive UAV can obtain local and inaccurate information about the
obstacle belt merely due to limited detection capability and detec-
tion uncertainty. Thus, it is necessary and essential to incorporate
the whole information through information fusion to achieve CSA.
Fig. 4 presents the diagram.

Definition 2 (Detection capability). The airborne sensor has a certain
detection range in practice. As depicted in Fig. 4, for depth camera,
its detection range is determined by the superior limit of visual

Depth
Camera
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distance Lg and visual angle o, while the relative distance L and
visual angle o between UAV and obstacle can be calculated by

L=/(p5 () = 1)+ (82 (1) — P + (95 (@) — p?)%
a =arctan [(p? (®;) — p?) / (¥ (®7) — p})].
(2)

where pX(®;), p (®;), pZ(®;) are the position components of
the obstacle ®; in the earth-fixed coordinate frame, and p7, p,?', p?
are the position components of the UAV i in the earth-fixed coor-
dinate frame.

In accordance with Assumption 1, the obstacles can be detected
only when they are within the detection range of sensors. In this
study, the step function §(L, &) is introduced to express the pro-
cess as follows:

S(L.a) = 1, ifO0<L<Lgand —as; <o <das, 3)
777 lo, otherwise.

2.3. Framework of the D-S evidence theory

The obstacle position and detection accuracy obtained by differ-
ent UAVs may have conflicts, especially when UAV is at a certain
distance from the obstacle. The framework of D-S evidence theory
is introduced in this part to eliminate the conflict and achieve the
CSA. The theory primarily comprises three elements, including dis-
cernment frame, basic probability assignment (BPA) function and
combination rule [39].

Definition 3 (Discernment frame). A set ® comprising independent,
complete, and exclusive elements @1, ®,,---, ®, is defined as a
discernment frame. Its power set 2€ contains all possible subsets
of the identification framework, which is written as follow:

29 = {2, {®1},{®2}, -, {®n}, {®1 U D2}, {®1 U D3}, -, O}
(4)
where & represents no obstacle is detected and {®1} describes

that obstacle @ is detected.

Definition 4 (Basic probability assignment). The basic probability as-
signment (BPA) is defined to better describe “uncertainty” and
“unknown”. Assume that each obstacle ®; maps to a function
m(®;) (m (®;) € [0, 1]). If m(d) satisfies

Obstacle Belt

Fig. 4. Scenario assumption of multi-UAV detection.
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m@) =0;m(®) =0; ) m(®) =1, (5)
=20

then m is qualified as a BPA on ®, where m(®) indicates the de-

gree of support for evidence, excluding support for any true subset

of ®, and @ refers to the empty set, which indicates that no ob-
stacle is detected during the detection process.

Definition 5 (D-S combination rule). After determining the discern-
ment frame, multiple independent sets of BPAs can be fused
through the following D-S combination rule:

m(®) =k Z

D1,P3,...,9,CO
d1NdyN,...op=>

forall ® C ©,d # g, Py, dy,..., D, C O, where k is the conflict
coefficient, which can be expressed as

my (P1) my (P2) ... my (Pp), (6)

—1
k= ( 1=3 01,0,,...0,co M1 (P1)m(P2)...My (‘1>n)> .
O1NdyN..NPp=L
(7

Definition 6 (Belief and plausibility function). The upper and lower
bounds of a probability interval are set in accordance with the
mass assignments. The above interval covers the precise probabil-
ity of an interest set (in the classical sense). It is associated with
two non-additive continuous measures, including plausibility and
belief (or support):

BEL(A) = P(A) < PL(A) (8)

The belief BEL(A) in terms of a set A represents the total
masses of subsets of the interest set:

BEL(A) = Z m(B) 9)

B|BCA

The plausibility PL(A) is the sum of all the masses of the sets
B that intersect the interest set A:

PL(A)= »_ m(B) (10)

B|BNA#D

The two measures are associated with each other in the follow-
ing:

PL(A)=1— BEL(A) (11)

where A denotes the complementary set of A.
2.4. Detection uncertainty

For depth camera, distortion occurs when it detects obstacles
due to its inherent characteristics and the errors in manufacturing
and assembly, leading to detection uncertainty. It is noteworthy
that the detection accuracy decreases with the increase of the vi-
sual distance L. Additionally, the detection accuracy is affected by
angular offset, that is, the accuracy decreases with the increase of
the visual angle «. Thus, the detection accuracy is affected by both
visual distances and angles.

Ref. [40] has suggested that the detection accuracy of two typ-
ical depth cameras, named Kinect vl and structure sensor, de-
creases exponentially with the increase of the visual distance.
Fig. 5 illustrates the data fitting result between detection accuracy
and visual distance. Accordingly, their qualitative relationship is
characterized with the exponential distribution, as shown in Fig. 6.

Aerospace Science and Technology 142 (2023) 108605

—-#-— Kinect v1
——&—— Structure Sensor 1

Detection Accuracy

oar Structure Sensor

0 . 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Visual Distance (m)

Fig. 5. Data fitting between detection accuracy and visual distance.

Additionally, the detection accuracy also indicates a specific dis-
tribution with the visual angle according to [41]. The fitting data
curve is illustrated in Fig. 7. As shown in Fig. 7, the detection ac-
curacy approximately presents a Gaussian distribution with visual
distance on a certain distance. Thus, the qualitative relationship
between detection accuracy of depth camera and visual distance is
characterized with the Gaussian distribution, as depicted in Fig. 8.

Based on the analysis, we know that the detection accuracy ap-
proximately presents the exponential distribution with visual dis-
tance L and Gaussian distribution with visual angle «. Therefore,
the exponential function P(L) is adopted to describe the rela-
tionship between detection accuracy and visual distance, and the
probability density function is defined as f(L). The Gaussian distri-
bution function P(«) is used to describe the relationship between
detection accuracy and visual angle, and the probability density
function is defined as f(«). They are mathematically expressed as

fL)=re
1 = (12)

202

)

flo)= e
o+21
where A and o represent the uncertainty coefficient of visual dis-
tance and angle, respectively.

Definition 7 (Detection accuracy). Combining Definition 2 and elim-
inating the effect of constant terms, the static detection accuracy
is defined as

a2

Pa(L, @) =27 2 P! S(L, o) e S(L, @)
A 5 = - . . s = o . ,
A o27

(13)

Note that P4(L, @) is not a probability density function since it
does not satisfy the basic properties. The purpose of this definition
is to establish the BPA m. Taking time dimension into considera-
tion, the BPA m in evidence theory is constructed as

o e 20?2
m (L, o) = 27 — - e Mol s (L, o)
t t X O‘\/ﬁ t t
0(2
—e w2 M S (L, ) (14)
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P(L,)

Detection Accuracy
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L L,

- >

Ly

Visual Distance (m)

Fig. 6. Qualitative relationship between detection accuracy and visual distance.
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A ©  Original Data
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Detection Accuracy

0.7
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I’ )|
[o]
(e}
1

0.55]

0.5
-100 -80 -60 -40 -20 0 20 40 60 80 100

Visual Angle (°)

Fig. 7. Data fitting between detection accuracy and visual angle.

It can be verified that m (L;, o) satisfies the conditions in (5), thus
it can be qualified as the BPA. The visual angle o; and the visual
distance L; at time t are given by

Lotanog

Lo—vt’ (15)
Li=Lg— vt,

o = arctan

where «g is the visual angle when UAV detects obstacles at initial
time and Ly is the visual distance at initial time.

3. CSA based on improved D-S evidence theory

Notably, achieving CSA is challenging due to the random-
ness of obstacle distribution and detection uncertainties. In this
section, an information fusion method is adopted by introduc-
ing and modifying the traditional D-S evidence theory, which is
presented in Fig. 9. Firstly, the multi-UAV system detects and
obtains the uncertain information about the obstacles, that is,
the obstacle position in body-fixed coordinate frame pj (<I> j) =

[p¥(®)).py (®)). pPZ (cbj)]T. Subsequently, the ground center
transforms pp (®) into pe (®), fuses the information through D-
S evidence theory, obtains the accurate fusion results Py, ,(P)
and disseminates them to the UAVs. Eventually, all UAVs receive
the results and carry out follow-up decisions. It is worth mention-
ing that the CSA is conducted not only among multiple UAVs, but
also among different times to achieve a higher detection accuracy.

3.1. CSA among multiple UAVs

We now apply the proposed fusion method into the CSA of the
multi-UAV system. Without loss of generality, the information fu-
sion among UAV [, II and IIl on OBS I is taken as an example. It
is assumed that three UAVs detect an obstacle at time t1. The first
step is to fuse information from all UAVs covering this obstacle.
Fig. 10 illustrates this process. Additionally, it is worth mention-
ing that contradictory information may occur during the detection
process. For example, UAV I detects the OBS I with high detection
accuracy, while UAV II may report that it does not detect OBS I.
This situation is called the trust paradox. Traditional D-S theory
cannot deal with the problem and obtain accurate fusion results
effectively. Thus, several trust paradoxes will be taken into consid-
eration and discussed later.

As depicted in Fig. 10, the three UAVs detect and obtain the
obstacle position p;(®;) and corresponding BPAs m;(®q1) (i =
1,2,3) initially, then information fusion is conducted for twice
to obtain single-fusion results miz ({p; (®1)}), miz2 ({p, (®1)}).
my3 ({p1 (@1)}), ma3 ({p2 (P1)}), P12(®1) and Py3(P1). Subse-
quently, we continue to fuse the data above and obtain the double-
fusion results miz3 ({p1 (®1)}), m123 ({2 (®1)}), m123 ({p3 (®1)})
and pqy3 ($1).

Based on Fig. 10, the BPAs and position information can be
fused by

3
_ v mis({pi (PO - pi (1)

where mip3 ({py (P1)}), mizz ({p2(®1)}) and mizs ({p3 (P1)})
refer to the BPAs, the physical meaning of which is the probabil-
ity of OBS I at p;(®1), p,(P1) and p3(P1), respectively, which are
written as

1
moz((pr (@D =1 Y. mi(AmyB)ms(C)
ANBNC=p1(d1)
= - {m1 (®1) - [1 —mz (P))]-[1—m3 (D]}
(17)
1
miz3 ({p2 (PD)D) = - > mi(A)my(B)ms3(C)

ANBNC=py(®1)
1
=y {[1=mq1 (P]-mz(P1)-[1 —m3(P1)]}
(18)
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Fig. 8. Qualitative relationship between detection accuracy and visual angle.
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calculates the fusion results 7_,(®) and
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Fig. 9. Schematic diagram of the multi-UAV system CSA mission.

2

ANBNC=p3(d1)

1
miz3 ({p3 (P1)) = - my (A)ymz(B)yms3(C)

1
= {[1 —my (P1)]-[1 —m2(D1)]-m3(P1)}

(19)
where k is written as
k= Y mi(AmBms3(0)
ANBNC#£Z
=mq (P1) - [1 =mp (P1)]-[1 —m3 (P1)] (20)

+[1—mq (P1)]-ma (P1) - [1 —m3 (P1)]
+[1—my (PD]-[1 —ma ($1)]-m3 (P1)

On that basis, the BPA and coordinate information fusion results
of UAV [, II and IIl on OBS I at time t; are yielded. Subsequently,
the results are fused with the remaining UAVs, and the overall in-
formation fusion results of OBS I at time t; under the detection of
all UAVs are achieved.

3.2. CSA among different times

Subsequently, the information fusion among different times is
conducted to achieve the final CSA. Similarly, the information fu-
sion among time t1, t and t3 on OBS I is selected as an example,
which is illustrated in Fig. 11. Notably, time dimension is consid-
ered in this process, that is, the multi-UAV system flies forward
and detects the obstacle belt under a fixed time step. Our task
is to fuse the detection results under different times and obtain
the CSA result. Moreover, similar trust paradoxes may also happen
during this step since the detection results under different times
can be highly contradictory too. The paradoxes will be considered
and processed through the modifications of the traditional D-S ev-
idence theory.

As shown in Fig. 11, the fusion results in the previous step
are regarded as the original information of this step, that is, the
fused obstacle position p'i(®;) and corresponding BPAs m'i(®q)
(i =1,2,3). Similarly, the obstacle position and BPAs are fused
through
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Fig. 11. Information fusion among different times.

3 1 i i
PIDE (@) = Z mtitats ({pt (q>1)}) . pli (®7)

— mtitats ({pfi ((b])})

The calculation of m"1%2% ({p'i (®1)}) (i=1,2,3) and conflict co-
efficient k are similar with Section 3.1, which are mathematically
expressed as

mt1t2t3 ({pt1 (q)1)})
1
=7 >

ANBNC=p'1 (d1)

(21)

my (A)ymz(B)ms(C)

1
=2 (m @0 [1-m @] [1-m" (@n)])

mt1t2t3 ({ptz (cbl)})
1

= Z

ANBNC=p'2 (¥1)

my(A)my(B)ms(C)

1
= o A[=mf @] -m= @) - [1-m® (@]}

mis (o (@)

(22)

(23)
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Table 1

BPA of four pieces of common conflict evidence.
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Propositions

Paradoxes Evidence
B c D E
my 1 0 0 \ \
. my 0 1 0 \ \
Complete conflict paradox (1) ms 08 01 01 \ \
my 0.8 0.1 0.1 \ \
m 05 0.2 0.3 \ \
m; 05 0.2 0.3 \ \
0 trust paradox (2) ms 0 0.9 o1 \ \
my 05 0.2 0.3 \ \
m 0.9 01 0 \ \
my 0 0.1 0.9 \ \
1 trust paradox (3) ms 01 045 075 \ \
my 01 015 075 |\ \
m 0.7 0.1 0.1 0 0.1
my 0 0.5 0.2 0.1 0.2
High conflict paradox (4) ms 0.6 0.1 0.15 0 0.15
my 055 01 01 015 01
ms 0.6 0.1 0.2 0 0.1
Table 2
Fusion results of conflict evidence using the D-S evidence theory.
Paradoxes K BPA of propositions after fusion D-S Convention
A B c D E
(1 1 \ \ \ \ A
(2) 0.99 0 0727 0.273 \ \ B A
3) 09998 0 1 0 \ \ B c
(4) 09999 0 03571 04286 0 02143 C A
— l . Z m1(A)mz(B)ms3(C) Besides, the numerator is zero in accordance with the combination
k ANBAC—pt3 (1) rule in Eq. (5), thus suggesting that the formula is invalid, and that
N ! information fusion cannot be achieved.
_ l ) {[1 —mh (491)] . [1 —m' (<I>1)] .mi3 (<I>1)} (24) For evidence with high conflict, the fusion results of D-S ev-
k idence theory also often violate common sense. Table 1 presents
k= Z m1 (A)my(B)ms(C) BPAs of four pieces of common conflict evidence, and Table 2
ANBACA£D presents the fusion results.
ot t t . .
=m" (@) [1-m? (@)][1 —m" (®1)] (1) Complete conflict paradox: the example above has explained
+ [1 _mh (q>1)] m'2 (dq) [1 — mi3 (©1)] that conventional D-S evidence theory is invalid when k = 1.
f & ts (2) 0 trust paradox: the conflict coefficient can be calculated as
+[1=m" (@] [1 —m (®1)]m" (¥1) (25) k = 0.99. It can be checked that because evidence ms to-

Through this step, the BPAs and coordinate information fusion
results of all times on OBS I are obtained. Afterwards, the results
are fused with the subsequent moments, and the overall informa-
tion fusion results of Obstacle I under the detection of all UAVs at
all times can be obtained to yield the final result of CSA.

3.3. Defects of the conventional D-S evidence theory

Conventional D-S evidence theory is capable of dealing with
the uncertainties in CSA to a certain degree, whereas it still has
limitations in processing evidence with complete or high conflict.
A complete conflict example is presented as follows to illustrate
the limitations.

It is assumed that two UAVs detect an obstacle and obtain its
position p; and p,, respectively. Thus, the discernment frame can
be expressed by ® = {p1, p2}, and the detection results of the two
UAVs are written as

UAVI:my (pg) =0,m; (py) =15
UAV II: my (p1) = 1,mz (p,) =0.

Conflict coefficient k =1 is obtained through calculation, thus
suggesting that two sources of evidences are of complete conflict.

(26)

tally denies proposition A, the BPA for proposition A in the
synthesis results will always be zero no matter how strongly
evidence my, my and mg4 support proposition A. That is, D-S
combination rule has the disadvantage of one ballot veto.

1 trust paradox: the conflict coefficient can be calculated as
k = 0.9998. Although all sources of evidence give small BPAs to
proposition B, the synthesis results completely believe propo-
sition B is the correct proposition, which is per-verse in prac-
tical application.

High conflict paradox: the total conflict factor can be calcu-
lated as k = 0.9999. It can be proved in a similar way that
precise synthesis results should support proposition A as ev-
idence my, m3, my and ms all give proposition A large BPAs.
However, high conflicts in the above evidence cause erroneous
reasoning.

3)

~

Since the combination of conventional D-S evidence often fails
due to the particularity of some propositions and the existence of
conflicting propositions, scholars have developed several improved
methods from the perspective of modifying the source of evidence,
the core of which are to redistribute the weight of each evidence
according to their relevance and conflict. Nevertheless, most of
them ignored the significance of BPA in the original propositions.
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Fig. 12. The flow chart of improved evidence combination method.

Thus, we analyze and improve the BPA of the original evidence,
and then adopt the D-S combination rule to ensure the integrity of
the improved D-S evidence theory.

3.4. Improved information fusion method towards high conflict
evidence

3.4.1. Similarity measure based on Pearson correlation coefficient

Denote m; and my as two evidence bodies based on the dis-
cernment frame ®. Then the correlation between the two pieces
of evidence can be calculated according to

_ cov(my,ma) _ E ((m1 — ftmy ) (M2 — tem,))
Om10m, Om;O0m,

P12 (27)

where pq, refers to the Pearson coefficient between m; and my,
cov (mq,my) indicates the covariance between two pieces of evi-
dence, E(m;) denotes the mathematical expectation of m;; pm, and
om; are mathematically expressed by

fm; = E (m;)
0, = E((mj — E (m))?)

= (m?) - E2(mp).

(28)

The range of Pearson coefficient is [—1, 1]. Negative values indicate
negative correlation, and smaller negative values mean higher neg-
ative correlation. Moreover, the Pearson coefficient less than zero
is modified as zero in order to satisfy the non-negative condition
of correlation coefficient as well as to reduce the effect of negative
value on basic probability. Therefore, the modified Pearson coeffi-
cient py (m;, m;j) between m; and m;j can be described by

if p;j >0,
otherwise.

Pij»

0. (29)

pm (mi, m;) =

Lemma 1. The following properties are satisfied for py (mi, m j).

1) 0<pm (mi,mj) <1.
2) pum (mi.mj) = py (mj, m;).
3) pm (mi,mj) =14 mj=am; +b, where a and b are constants.

Proof. The proof of Lemma 1 is reported in Appendix A. W

3.4.2. Uncertainty measure based on evidence interval probability
The method in Section 3.4.1 only considers the correlation be-
tween the evidence and evaluates the evidence from merely one

10

perspective, which is not comprehensive enough. On that basis, ev-
idence uncertainty is introduced, and conflicting evidence is mod-
ified in different aspects.

Evidence theory suggests that the confidence interval [BEL(®),
PL(®)] can be determined in accordance with BPA, and the inter-
val confidence of all single-element subsets can be considered as
the interval probability. For BPA based on the discernment frame
® = {®q, Py, ---, dyp}, all the confidence intervals constitute the
interval probability distribution on ®. Moreover, the uncertainty of
interval probability (e.g., the uncertainty of evidence) comprises in-
consistency and imprecision. Thus, confidence interval is employed
for qualification. The median value w of all interval
probabilities is employed to obtain the inconsistency, and the in-
terval length PL (®;) + BEL (®;) is used to obtain the inaccuracy.
Based on this idea, a novel uncertainty measure is introduced.

For each given evidence bodies, we are able to obtain their be-
lief BEL and plausibility PL through Eq. (9) and (10). Then the
uncertainty degree Un(m) of BPA m can be mathematically ex-
pressed by

. BEL (®;) + PL (®;
WW=ZP (00 +PL®)

i=1

BEL (®;) + PL(®;) PL(®;) — BEL (D))
'logz D) )

} (30)

3.4.3. A novel evidence weight assignment method

In this study, the Pearson coefficient is adopted to build the
correlation measure between different pieces of evidence and de-
termines the evidence credibility, whereas evidence uncertainty is
considered comprehensively. The result of the analysis suggests
that evidence credibility represents the degree of its support by
other evidences, and evidence uncertainty represents the degree
of conflict between it and other evidences. Thus, the weight of
the evidence with high credibility should be increased and the
weight of the evidence with high uncertainty should be reduced
during the evidence combination. Accordingly, this study combines
the credibility and uncertainty to determine the weight coefficient
of the evidence, revise the original evidence, weighted average the
BPA of the revised evidence, and then use the D-S combination
rule to fuse it, so as to solve the evidence conflict. The flow chart
of the improved method is illustrated in Fig. 12.

1) Calculate the modified Pearson coefficient pp (m;, m;) between
two evidences and establish the correlation matrix S:
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Table 3
Simulation parameters setting.
Item Parameter Item Parameter
Obstacle space 300 m x 200 m x 100 m At 1s
noBs From 20 to 100 A 0.6
nyav 5 o 1
vi=[v5,v) v T 120,001 m/s L, 0~550 m
Velocity direction Positive X axis 05 —45° ~ +45°
oM (M, my) Pom (my, mp)
Pom (Mo, my) om (mz, mp)
S = (31)
om (My,my) pm (My, my)

2) Calculate the support degree Sup(m;) of evidence m;. Note that
Sup(m;) may be zero due to high evidence conflict. As a result,
the denominator will be zero too in step 3) and subsequent
calculation. Thus, we modify and assign Sup(m;) to a small
number €(€ =0.001 in this study) if it is zero.

n

Sup(m)= > pm (mi,mj) (32)
j=1,j<i
3) Calculate the credibility Crd(m;) through
Sup (m;)
Ccrd(mj) = —————— (33)
U Yk Sup (my)

4) Calculate the uncertainty degree Un(m;) of each evidence ac-
cording to Eq. (30).

5) Obtain the weight according to evidence credibility Crd(m;)
and uncertainty Un(m;). Denote w(i) as the weight of evi-
dence, then it can be calculated by

_ Crd (m;) x eUntm)
P (Crd (mj) x eU“(mi))

6) Weighted average the original evidence using the normalized
weight coefficient and obtain the modified evidence m; by

w(i) (34)

=Y (w(i) x m;)

i=1

(35)

7) Combine the weighted average evidence m; for n — 1 times
using the D-S combination rule and obtain the results.

4. Case study

In this section, we give three simulation cases and correspond-
ing analyses. The first case is the comparison between our CSA
scheme of the multi-UAV system and SA of a single UAV, which
verifies the feasibility of the method. The second case is the appli-
cation of the CSA method under flexible formation shapes, which
demonstrate the scalability and universality of the method in prac-
tice. The third case is the comparison of performances between
the modified algorithm and four existing methods, which validates
the superiority of our method. The simulations are conducted with
MATLAB software on Windows 10 system, while the obstacles are
randomly distributed in a given 3D space using the Monte Carlo
stochastic modeling method. The average time of simulation is
3.284 s, and the simulation parameters are set as Table 3.

4.1. Comparison between the CSA of the multi-UAV system and SA of a
single UAV

The CSA of the multi-UAV system under a specific formation
shape is conducted first. The purpose of this case study is to verify

11
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Fig. 13. Distribution of UAVs and obstacles under a certain formation shape.

Table 4
Quantitative comparison results between SA of a single UAV and CSA.
nogs Method Detected obstacles Average detection accuracy
20 SA 10 33.18%
CSA 20 93.85%
40 SA 23 41.25%
CSA 40 90.87%
60 SA 38 39.47%
CSA 60 87.33%
30 SA 42 32.41%
CSA 79 82.66%
SA 39 17.52%
100 CSA 98 79.09%

that a multi-UAV system can detect obstacles more widely and ac-
curately using our developed CSA method, compared with SA of a
single UAV. The distribution of multi-UAV system and obstacles is
shown in Fig. 13. Note that the formation shape (called Formation
I) is fixed, while the number and distribution of obstacles are both
different in each test.

The comparison between the SA of a single UAV and CSA of the
multi-UAV system is illustrated in Fig. 14(a) and Fig. 14(b). Note
that the circles are obstacles, while shades of color represent the
degree of detection accuracy. Besides, the number of obstacles nogs
is set as 20.

Fig. 14(a) depicts the SA result of a single UAV for a single sam-
pling time, which shows that only a few obstacles are detected,
whereas the detection accuracy is generally low. As depicted in
Fig. 14(b), the improved CSA method of the multi-UAV system can
significantly detect more obstacles while being aware of the ob-
stacles more accurately, with an average detection accuracy above
90%. Next, we extend the number of obstacles npgs to 40, 60, 80
and 100, respectively and obtain the CSA result of the multi-UAV
system in Fig. 15 and Table 4.

According to the CSA results illustrated in Fig. 15 and quantita-
tive comparison results expressed in Table 4, our CSA scheme can
improve both the quantity and quality of obstacle detection. Com-
pared with SA of a single UAV, the CSA of the multi-UAV system
can detect twice the number of obstacles, and the average detec-
tion accuracy is also 40% ~ 50% higher. Even when nogs increases
to 100, our scheme can still detect most obstacles and maintain the
average detection accuracy at about 80%. Possible reasons include
that the proposed CSA scheme has a wider detection range and
can improve detection accuracy through information interaction
and fusion. The results validate the effectiveness and superiority
of the proposed CSA method.
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Fig. 15. CSA results of the multi-UAV system with different obstacle numbers.

4.2. CSA under flexible formation shapes

In this section, the CSA results are extended for multiple times
of sampling and the dynamic variation of detection accuracy is
evaluated. Furthermore, to verify the scalability of the developed
method, we fix the obstacle number ngpgs (the obstacle distribution
is still random) and apply five formation shapes into the multi-UAV
system, as shown in Fig. 16.

Additionally, to better illustrate the dynamic process of the
multi-UAV system detecting obstacles, we divide the obstacle re-
gion into three parts, as shown in Fig. 17. The regions covered by
red solid line, black dotted line and blue dashed line are accord-
ingly the Area I, II and IIL It is worth noting that the five forma-
tions are drawn on different planes in order to be distinguished,
while they remain on the same plane during the simulation. Same
as the above setting, all the multi-UAV systems fly forward at a

12

constant speed of 20 m/s along the X-axis. The detection accuracy
of the three areas is illustrated in Fig. 18.

As depicted in Fig. 18, after multiple fusions, all formations can
complete the detection in the three areas with high detection accu-
racy, whereas Formation I achieves a maximum detection accuracy
of 96.58% in Area I. Such an improvement is due to more sparse
distribution, wider detection range and no mutual obstruction of
view.

Note that the trends in detection accuracy in the three areas are
not consistent. In Area I, the detection accuracy of all formations
increases rapidly with the increase in sampling times. However, in
Area II, the detection accuracy of Formations III, IV, and V oscillates
slightly at first and increases gradually after the third sampling
time. In Area II, all formations start to detect obstacles after the
fourth sampling time. Afterwards, the detection accuracy of all for-
mations oscillates locally but shows an overall increasing trend.
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Fig. 17. Distribution of UAVs and obstacles under flexible formations.

Possible reason includes the relative distance between the obstacle
area and the multi-UAV system. Area [ is closest to the multi-UAV
system and may already be within the detection range of the depth
camera, while the obstacles in Area IIl may not be detected dur-
ing the first few sampling times. In addition, Formation I has the
widest overall detection range, and the view of each UAV in the
system is not obscured by other UAVs. Thus, the detection accu-
racy of Formation I shows a distinguishing increase among the five
formations.

It is worth mentioning that all formations can finally main-
tain a relatively high detection accuracy (above 80%) after our CSA
scheme is applied, which validates the effectiveness and scalability
of the proposed method.

4.3. Comparison between the improved algorithm and existent methods

The advantages of the improved method in this study are veri-
fied under the given recognition framework and evidence. We take
four paradoxes described in Section 3.3 as examples to discuss the
rationality and validity of the modified algorithm. The BPAs of four
common paradoxes are illustrated in Fig. 19.

Fig. 19 suggests that evidence during the CSA process can be
divided into consistent evidence and conflicting evidence. Appar-
ently, the relatively consistent evidence includes mq, m3, and mgy
in complete conflict paradoxes, mq, my, and my in O trust para-
dox, mp, ms3, and my in 1 trust paradox, and my, ms, myg and ms
in high conflict paradox. Thus, accurate synthesis results should
agree with the above consistent evidence while being away from
conflicting evidence.

Notably, the conventional D-S combination rule cannot manage
all four paradoxes. In this study, four existing improved methods
developed by Yager [33], Sun et al. [34], Murphy [35], and Li et al.
[37] (called Yager, Sun, Murphy, and Li for short) are selected for
comprehensive analyses with the improved method (called Im-
proved for short). The synthesis results are presented in Table 5
and Fig. 20. According to the results, the following discussions are
conducted.

(1) Complete conflict paradox: my, ms3, and my are the relatively
consistent evidence. Yager gives the uncertain domain ® the
whole belief as m(®) = 1, which, on the contrary, increases
propositions’ uncertainty. Sun only solves part of the conflicts
as the BPAs of propositions A, B, and C match the BPAs’ pro-
portion of the above consistent evidence, whereas the BPA for
® remains high as m(®) = 1, which still has high uncertainty.
Furthermore, Murphy, Li, and Improved get relatively accurate
results for complete conflict paradoxes.

(2) 0 trust paradox: my, my, and my4 are the relatively consis-
tent evidence. It is easy to check that the consistent evidence
is the same, such that the most valid algorithm should have
the minimum difference between the synthesis results and the
consistent evidence. As can be seen intuitively, Yager presents
totally wrong results, and Improved is the most effective algo-
rithm in this kind of paradox.

(3) 1 trust paradox: my, ms, and m4 are the relatively consistent
evidence. Yager and Sun cannot solve this paradox practically,
which can be demonstrated in a similar way to the discussion
of Case (1). Furthermore, Murphy, Li, and Improved are capable
of managing 1 trust paradox to different degrees.

(4) High conflict paradox: mq, ms3, my, and ms are the relatively
consistent evidence. Yager and Sun are logical theoretically but
cannot be put into practice because of their increasing uncer-
tainty. Murphy, Li, and Improved all produce relatively reason-
able results in this kind of paradox.
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Fig. 20. Comparison of the fusion results.

The propositions with four kinds of evidence conflicts in Ta-
ble 5 should be AACA. The fusion results using the developed
method can identify the corresponding propositions with the max-
imum BPAs. The results are consistent with common sense and
are valid for all four kinds of conflicts. Moreover, it can be con-
firmed that Yager will generate incorrect results of synthesis based
on paradoxes, and it is unable to handle any kind of paradox. Sun
allocates most of the conflicts directly to ®, which only solves
paradoxes theoretically. It is not suitable for practical application
because of the increasing uncertainty of synthesis results. Murphy
averages all evidence without separating consistent evidence and
conflicting evidence. Besides, it is not capable of solving paradoxes
since evidence has an inconsistent contribution to the results of
synthesis, regardless of its simple computation. Thus, only Li and
Improved can generate relatively reasonable synthesis results for
all the above four common paradoxes. Besides, by comparing the
BPA obtained by the algorithm in Table 5, we obtain that the Im-
proved algorithm has the highest identification BPA for reasonable
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propositions, which proves that our method performs better than
all other algorithms in solving the four conflicts above.

5. Conclusion and future work

Based on the background of UAV detection, this study applies
the improved D-S evidence theory to the CSA of the multi-UAV
system to conduct the information fusion detected by airborne
sensors, which demonstrates superior performance on dealing with
detection uncertainty. Compared to the SA of a single UAV, the
proposed CSA scheme for the multi-UAV system is able to detect
more obstacles and perceive the obstacles more accurately, with a
40% ~ 50% higher average detection accuracy. In the case study of
CSA under flexible formation shapes, the detection accuracy under
different formation shapes is illustrated by a diagram of curves.
The uncertainty of fusion results decreases, and the accuracy in-
creases as more pieces of information are fused. Additionally, com-
pared to existing methods based on the modified D-S evidence
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Table 5
Comparison of the combination results.
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Propositions

Paradoxes Methods
A B c D E F
Yager 0 0 0 \ \ 1
Sun 0.0917 00423 00071 | \ 0.8589
1) Murphy 0.8204 01748 00048 | \ 0
Li 09242 00502 00256 | \ 0
Improved 09998  0.0001 00001 | \ 0
Yager 0 0.7273 0.2727 \ \ 0
Sun 0.0525  0.0597 00377 | \ 0.8501
) Murphy 04091 04091 01818 | \ 0
Li 04679 02800 02521 | \ 0
Improved 0.8655 0.0223 01122 \ \ 0
Yager 0 1 0 \ \ 0
Sun 0.0388 00179 00846 | \ 0.8587
3) Murphy 01676  0.0346 07978 | \ 0
Li 0.0791 00743 08466 | \ 0
Improved 00001 00010 09989 | \ 0
Yager 0 03571 04286 0 02143 0
Sun 0.0443 00163 00136 00045 00118 09094
(4) Murphy 0.7637 01031 00716 00080  0.0538 0
Li 0.6320 01227 01171 00316  0.0967 0
Improved 09991 00001 00006 0 0.0002 0
. . . 2
Fheory, our mgdlﬁcatlon shows a bgttgr performance in improv- E ((m,- - /Lm,.) (mj - ,umj)) 21 A3
ing the detection accuracy and achieving an accurate CSA of the oo =pij= (A3)
multi-UAV system. mim,
Nevertheless, the D-S evidence theory still has limitations such which is equivalent to
as high dependence on original data and lack of solid theoretical
foundations. Thus, future work will include heterogeneous multi-  —1< ;5 <1 (A4)
s.ensor fusion, and fur.ther .1mprovem.ent of oth?r information fu- Then, it follows from (29) that
sion methods (e.g. Evidential Reasoning, ER) will also be consid-
ered. pii €10,11, if p;; >0
ij » L pPij = U,
pm (mi, mj) = i (A.5)
. L. 0, otherwise.
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Appendix A. Proof of Lemma 1

Proof. The three properties for pp(m;, m;) are proved as follows.
For property 1), we firstly prove the range of p;j. According to
Cauchy-Schwarz inequality, we have

[E (m; -mj)]2 <E (mlz) E (m?)
Substituting m; with m; — pm,, m; with m; — Hm;, we obtain
[E (mi = s (= s )

< E((m; — E m)®)E((mj — E (m}))*)

According to (27), we can rewrite (A.2) as

(A1)

(A2)
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This completes the proof of property 1).

For property 2), we only consider the case of p;j > 0, since
pwm (mi, mj) is zero in the other case. Synthesizing (27) with (28)
yields

E (i~ ttm) (m; ~ 1)
E((m; — E m))E((mj — E (m})))
~ E((mj = pmy) (mi — pmy))
E((mj — E (mj)))E((m; — E (m;)))
= PM (mj, mi)
which completes the proof of property 2).
For property 3), we prove its sufficiency (from left to right)
firstly, with the consideration of case p;; >0 (oM (mi,mj) is zero

if pij < 0). Due to py (m;, mj) = pjj = 1, two standardized versions
of m; and m; are defined as

pm (mi,mj) =

(A.6)

i —E (m; mj—E(m;
U:ml (ml)’ v (J) (A7)
Om; Om;
Then,
m; — E(m;) mj—E(m;
pij =Cov (U, V) = Cov [ — (‘), j—E(mj)
Om, Om;
Cms
—cov (1 M0 (A.8)
Om; Om;
Cov (m;, mj)
© OmOm;
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Using the following inequality

a’+ B2

aff < — Va,BeR (A.9)
This is because (« — )% > 0. The equality holds only if @ = 8. From
this, we can obtain that for any two random variables U and V,

EU2 + EV?2
E[UV]< —

(A10)
where the equality holds only if U =V with probability one.
Now, let U and V be the standardized versions of m; and m; as
defined in (A.7). Then, we have p;; = Cov(U, V) = E[UV]. Since
EU? =EV? =1, we can derive

EU?4+EV?

pij = E[UV] < 1 (A11)

where the equality holds only if U =V, i.e,

m,-—E(m,-)_mj—E(mj) (A12)
O—mi UmJ
which implies
Om; Om;
mj= —m; + (E(mj) — —’E(mi))
Um,- Um,» (A]B)

=am; +b,

where @ = om;/0om; and b = (E(mj) — om;/om E(m;)) are con-
stants. This completes the proof of sufficiency of property 3). The
proof of necessity is the reverse process of the above. Note that
pm (mi, mj) =1 implies that m; is highly linear with m;, i.e., evi-
dences m; and m; are mutually supportive. So far, we have com-
pleted the proof of three properties. W
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