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Situational awareness (SA) of unmanned aerial vehicles (UAVs) has been a research hotspot over 
the decades. Existing research mainly focuses on the SA of a single UAV in two-dimensional planes, 
whereas obstacles are assumed a priori. To eliminate these constraints, this study considers the 
cooperative situational awareness (CSA) problem of multi-UAV systems in the scenario of crossing a three-
dimensional (3D) obstacle belt while no prior information of obstacles is required. First, the distribution 
models of the multi-UAV system and the obstacles are built based on two reference frames. Second, 
various types of uncertainties are characterized, which reflect an urgent need for CSA. Thus, a centralized 
CSA scheme is proposed and conducted on multiple UAVs and at different times, and the Dempster-Shafer 
(D-S) evidence theory is introduced to address information uncertainties and achieve high-accuracy 
information fusion. Next, to deal with the high-conflict evidence situations that are common in practice, 
a modified D-S fusion method is further developed. A modified Pearson coefficient is utilized to measure 
the correlation between different pieces of evidence. Both information credibility and uncertainty are 
taken into account to evaluate the evidence from different perspectives, and a novel evidence weight 
assignment method is presented to treat high-conflict situations. Numerical simulations validate the 
effectiveness of the proposed CSA method. Compared to existing studies, the proposed method is 
applicable to different trust paradoxes and achieves the best performance among various fusion methods.

© 2023 Elsevier Masson SAS. All rights reserved.
1. Introduction

Situational awareness (SA) is the perception of the elements in 
the environment within a volume of time and space [1], which 
lays a solid basis for UAV networks to implement a wide variety 
of missions. Accurate SA is an essential challenge to unleash UAV’s 
potential for practical applications [2]. Moreover, SA is critical for 
the reliable operation of almost all systems and domains [3–5]. In 
the aviation industry, SA is one of the vital elements in pilot train-
ing for flying, controlling, and maintaining [6]. The requirements 
for reliable UAV control and SA are explained in [7], which states 
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that all nodes should periodically broadcast a precise participant 
location and identification message (e.g., position and state).

Although numerous studies have applied UAVs for SA, the 
strong uncertainty in the environment can easily lead to inaccu-
rate SA results [8]. Moreover, in the perception system of UAV, 
the quantity and quality of detection data directly affect the ef-
fectiveness of SA, thus suggesting the significance of information 
acquisition and processing [9,10]. In [11], a UAV-based situational 
awareness system using deep learning was built to detect and lo-
cate people and recognize their actions in near real-time. However, 
the accuracy of action recognition was affected by the accuracy 
of the person detection, resulting in a low mean Average Preci-
sion (mAP). Furthermore, single visual camera, which is commonly 
used as a device for situational awareness, has limited ability to 
obtain complete information of objects [11]. Accordingly, a multi-
UAV system with multiple visual cameras is expected to improve 
the quantity and quality of information acquisition, obtain accurate 
environmental information, and achieve precise cooperative situa-
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Nomenclature

pi Position of UAV i in earth-fixed coordinate frame
� j Obstacle j
pb(� j) and pe(� j) Position of obstacle j in body-fixed and 

earth-fixed coordinate frame
δi = [θi,ϕi,ψi]T Attitude angle set of UAV i
T be Translation vector
Rbe Rotation matrix
v i Velocity vector of UAV i
Ls Superior limit of visual distance L
αs Superior limit of visual angle α
� Discernment frame
m(�) Basic probability assignment function
k Conflict coefficient
P (L) Correlation between detection accuracy and visual dis-

tance

P (α) Correlation between detection accuracy and visual an-
gle

P A(L,α) Overall detection accuracy
m(Lt ,αt) Basic probability assignment function of information 

fusion
p1(�1) Position of detected by UAV I
m1(�1) Detection accuracy of detected by UAV I
P 123(�1) Fused position of �1 among UAV I, II and III
pt1 (�1) Position of detected at time t1
mt1 (�1) Detection accuracy of �1 detected at time t1
P t1t2t3 (�1) Fused position of �1 among time t1, t2 and t3
ρM(mi,m j) The modified Pearson coefficient between evidence 

mi and m j
Sup(mi) Support degree of evidence mi
Crd(mi) Credibility of evidence mi
Un(mi) Uncertainty degree of evidence mi
tional awareness (CSA). As a key factor in multi-UAV cooperative 
operation, the CSA of multi-UAV systems has also attracted exten-
sive attention in relevant fields [12–14], which requires that the 
information obtained by all UAVs achieve a consensus with true 
environmental information [15].

The CSA is capable of reducing or eliminating the effect of 
uncertainty through the interaction of information, i.e., the multi-
sensor information fusion. Multi-sensor information fusion tech-
nology refers to processing the data transmitted from different 
information sources, combining the above data according to cer-
tain rules, and then making efficient and accurate decisions [16]. 
It is a rapidly developing discipline and has been applied to a 
wide variety of scenarios including the SA [17–19]. Theoretical 
multi-sensor information fusion methods include the weighted av-
erage method [20], Kalman filter method [21], Bayesian estimation 
method [22,23], D-S evidence theory [24–26], etc. Nevertheless, 
a common feature of the most existing work on CSA is to assume 
the environment information to be a priori and ideal airborne sen-
sors, while the uncertainty caused by unknown obstacles, sensor 
aging, and interference from other factors in CSA often leads to ab-
normal information and inaccurate CSA results. Ref. [27] presented 
a multi-UAV cooperation method via workflow, in which the au-
thors clarified that the situational synchronization of detected tar-
gets among UAVs could be achieved through limited information 
interactions, but the information uncertainty was not thoroughly 
considered. In [15], a multi-UAV CSA consensus three-level model 
was built considering the information uncertainty; however, this 
kind of uncertainty was only reflected in the reference matrices 
without specific modeling and characterization. It is noteworthy 
that though Bayesian estimation method is also capable of solv-
ing information uncertainty, it requires previous data as a priori
probability to obtain a novel probability, which is not applicable 
in numerous cases [28]. In contrast, D-S evidence theory is capa-
ble of fusing uncertain information when the prior probability is 
unknown and representing the probability of uncertain problems 
using the basic probability assignment, thus indicating the superior 
fusion performance of the theory. Due to its advantages, D-S evi-
dence theory has been employed in a wide variety of areas to solve 
related problems, especially in the CSA field. In [29], a situational 
assessment mathematical model based on the D-S evidence the-
ory has been studied. Moreover, D-S evidence theory is combined 
in [30] to improve the accuracy of ship target type recognition, 
which is greatly associated with battlefield SA. Considering its ex-
cellent performance in dealing with sensor uncertainty, the D-S 
2

evidence theory is adopted as the multi-sensor information fusion 
method in this study to achieve CSA of multi-UAV systems.

In addition, though the conventional D-S evidence theory is ca-
pable of dealing with the uncertainty in CSA, it still has limitations 
in trust paradox, one-vote rejection, etc. The trust paradox reveals 
that contrary results may be obtained in the presence of high-
conflict evidence. To address the above problems, scholars have 
improved the conventional D-S evidence theory from different per-
spectives [31], which are mainly divided into two categories: the 
improved D-S combination rules and the modified conflict evi-
dence methods. Some researchers think that unreasonable results 
are mainly caused by the normalization step of D-S combination 
rule. Thus, they optimize the D-S combination rule by giving ev-
idence conflicts to a certain subset with a specific proportion, 
which is called the improved D-S combination rule. In [32], the 
uncertain domain is considered an incomplete set and conflicts are 
given to an unknown proposition. This method solves paradoxes 
theoretically, whereas it increases the uncertainty of synthesis re-
sults by introducing an unknown proposition. Yager in [33] allotted 
conflicts directly to the uncertain domain. However, it can only set-
tle paradoxes efficiently with two evidence sources, and it is too 
conservative to admit the useful information that exists in con-
flict evidence. On this basis, an improved method is developed by 
dividing evidence into support evidence and conflicting evidence, 
which solves the problem of unequal information quantity in ev-
idence [34]. Other scholars consider that paradoxes are mainly 
caused by unreliable evidence. Thus, instead of changing the D-S 
combination rule, this type of method modifies evidence before 
combining evidences, which is called the modified conflict evi-
dence method. To be specific, an improved method is put forward 
by considering the average mean of evidence as a novel evidence 
before evidence combination [35]. Note that the idea only aver-
ages the evidence without considering their differences. Thus, the 
paper [36] proposed a fusion method through calculating novel ev-
idence by the weighted sum of evidence. To combine high-conflict 
evidence efficiently, a novel method is developed in [37] through 
the introduction of sensor priority and evidence credibility, thus 
enhancing the reliability of the system.

Motivated by the above observations, this study aims to present 
a CSA approach based on multi-sensor information fusion. The dis-
tribution models of the multi-UAV system and obstacles are estab-
lished considering multiple uncertainties based on the background 
of the multi-UAV system detecting an obstacle belt. Subsequently, 
the D-S evidence theory is applied and modified into the infor-
mation fusion process to deal with the uncertainties and fuse the 
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information from the multi-UAV system, such that a more accurate 
CSA is achieved. The main contributions of this study are presented 
as follows:

1. A novel centralized CSA scheme based on the idea of informa-
tion interaction and fusion is proposed and applied to coop-
erative detection scenarios. No prior information for obstacles 
is required, i.e., the obstacles can be randomly distributed in a 
given 3D space. Compared to SA by a single UAV, the proposed 
CSA scheme enables the multi-UAV system to detect more ob-
stacles, while greatly improving the overall detection accuracy.

2. Unlike previous works [15,27] that ignored the uncertainties 
thoroughly during the detection process, the proposed CSA 
scheme integrates various typical uncertainties including the 
environmental uncertainty, detection uncertainty, and informa-
tion uncertainty. The D-S evidence theory is introduced and 
conducted on multiple UAVs and different times to fuse the 
uncertain information and obtain the detection results with 
high accuracy.

3. To deal with the aforementioned uncertainties, a modified CSA 
scheme based on the modified Pearson correlation coefficient 
is further presented. Thanks to the comprehensive consider-
ation of evidence credibility and uncertainty, the proposed 
modified CSA scheme is applicable to treat high-conflict sit-
uations and outperforms existing research methods [33–35,37]
in solving various trust paradoxes.

The remaining sections of the paper are arranged as follows. 
The coordinate frames and their transformation are defined in Sec-
tion 2, while the mathematical models of UAV and obstacles are 
built considering the detection uncertainty and the framework of 
the D-S evidence theory is established. Section 3 describes the 
overall process of multi-UAV system CSA among multiple UAVs and 
different times, while the defects and modifications of the conven-
tional D-S evidence theory are elaborated. Three simulation cases 
are conducted, and numerical results are displayed in Section 4. 
Lastly, conclusions and future work are presented in Section 5.

2. Preliminaries

2.1. Coordinate definition and transformation

Definition 1 (Body and earth-fixed coordinate frames). To start with, 
two reference frames are defined, i.e., the body-fixed coordinate 
frame and the earth-fixed coordinate frame [38]. As depicted in 
Fig. 1, the body-fixed coordinate frame is a moving coordinate 
frame which is fixed to the UAV. The origin Ob is chosen to coin-
cide with the center of gravity, and Xb, Yb, Zb represent the X, Y, Z
axis of the frame, respectively. Note that the positive direction of 
Xb is the head of UAV, the Yb axis is perpendicular to the horizon-
tal plane, and the Zb axis is perpendicular to the XbObYb plane. 
The earth-fixed coordinate frame, on the other hand, has its ori-
gin Oe fixed to a specific point in space, while Xe, Ye, Ze represent 
its three axes. The motion of UAVs and the location of obstacles 
are described in this earth-fixed coordinate. For convenience, we 
abbreviate the obstacle as OBS.

Let pi = [px
i , p

y
i , pz

i ]T ∈ R3 be the position of UAV i in earth-
fixed coordinate frame, while the position of obstacle � j in 
body and earth-fixed coordinate frames are defined as pb

(
� j

) =[
px

b

(
� j

)
, p y

b

(
� j

)
, pz

b

(
� j

)]T ∈R3 and pe

(
� j

) = [
px

e

(
� j

)
, p y

e
(
� j

)
,

pz
e

(
� j

) ]T ∈ R3, respectively. In addition, δi = [φi, θi,ψi]
T ∈ R3 de-

notes the attitude angles set of UAV i, where φi, θi and ψi are 
roll, pitch and yaw angles of UAV i, respectively. The solid blue 
3

Fig. 1. Body and earth-fixed coordinate frame. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Transformation from body-fixed coordinate to earth-fixed coordinate.

line represents the transformation between the body-fixed coor-
dinate frame and the earth-fixed coordinate frame, which will be 
precisely described in Fig. 2.

Remark 1. The initial information available for ground base station 
includes the position of UAV in earth-fixed coordinate frame pi , 
the attitude angle set δi and the position of obstacle in body-fixed 
coordinate frame pb

(
� j

)
, while the obstacle position in earth-

fixed coordinate frame pe

(
� j

)
requires the coordinate transfor-

mation.

To describe the obstacles in a unified coordinate frame, the ob-
stacle position should be converted from body-fixed coordinate 
frame to earth-fixed coordinate frame, which is shown in Fig. 2
(the meanings of the symbols in Fig. 2 are the same as those 
in Fig. 1). As depicted in Fig. 2, the coordinate transformation is 
achieved through a translation and rotation, which is written as 
follows:

pe

(
� j

) = T be · Rbe (1)

where the translation vector T be = pb

(
� j

) + pi , and the rotation 
matrix Rbe can be calculated by attitude angles.

2.2. Multi-UAV system and obstacle model

Consider n(n ≥ 2) UAVs conducting a detection task in R3. 
The configuration of the multi-UAV system is denoted by p =[

pT
1, pT

2, . . . , pT
n

]T ∈ R3n , and the kinematics of the UAV can be 
expressed as v i = ṗi , where v i = [

vx
i , v y

i , vz
i

]T ∈ R3 is the veloc-
ity vector of UAV i. The m(m ≥ 2) obstacles � = {�1,�2, · · · ,�m}
are spatially distributed with p(�) = [

pT (�1) , pT (�2) , . . .
pT (�m)

]T ∈ R3m in a given 3D space. Note that the formation of 
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Fig. 3. Obstacle detection by depth camera.

the multi-UAV system is fixed, while the obstacles are randomly 
distributed in a given 3-D space. In addition, the following as-
sumptions are made.

Assumption 1. The respective UAV carries a limited-capability 
depth camera which can detect the 3D coordinate of the obsta-
cle within a perception range, as shown in Fig. 3. The detected 
information includes pb

(
� j

)
, relative distance L and visual angle 

α, with b/2 representing the focal length of the camera.

Assumption 2. Detection uncertainty occurs during the process of 
perception, especially when an obstacle deviates from the center 
of sight and is far away from the UAV’s depth camera.

Assumption 3 (Scenario assumption). We consider several UAVs fly-
ing forward at speed v i and perceiving an obstacle belt consist-
ing of multiple obstacles, whereas all UAVs are distributed in the 
same plane. In accordance with Assumptions 1 and 2, the respec-
tive UAV can obtain local and inaccurate information about the 
obstacle belt merely due to limited detection capability and detec-
tion uncertainty. Thus, it is necessary and essential to incorporate 
the whole information through information fusion to achieve CSA. 
Fig. 4 presents the diagram.

Definition 2 (Detection capability). The airborne sensor has a certain 
detection range in practice. As depicted in Fig. 4, for depth camera, 
its detection range is determined by the superior limit of visual 
Fig. 4. Scenario assumption

4

distance Ls and visual angle αs , while the relative distance L and 
visual angle α between UAV and obstacle can be calculated by

L =
√(

px
e
(
� j

) − px
i

)2 + (
p y

e
(
� j

) − p y
i

)2 + (
pz

e
(
� j

) − pz
i

)2
,

α = arctan
[(

p y
e
(
� j

) − p y
i

)
/
(

px
e

(
� j

) − px
i

)]
,

(2)

where px
e

(
� j

)
, p y

e
(
� j

)
, pz

e

(
� j

)
are the position components of 

the obstacle � j in the earth-fixed coordinate frame, and px
i , p

y
i , pz

i
are the position components of the UAV i in the earth-fixed coor-
dinate frame.

In accordance with Assumption 1, the obstacles can be detected 
only when they are within the detection range of sensors. In this 
study, the step function δ(L, α) is introduced to express the pro-
cess as follows:

δ(L,α) =
{

1, if 0 ≤ L ≤ Ls and − αs ≤ α ≤ αs,

0, otherwise.
(3)

2.3. Framework of the D-S evidence theory

The obstacle position and detection accuracy obtained by differ-
ent UAVs may have conflicts, especially when UAV is at a certain 
distance from the obstacle. The framework of D-S evidence theory 
is introduced in this part to eliminate the conflict and achieve the 
CSA. The theory primarily comprises three elements, including dis-
cernment frame, basic probability assignment (BPA) function and 
combination rule [39].

Definition 3 (Discernment frame). A set � comprising independent, 
complete, and exclusive elements �1, �2, · · · , �n is defined as a 
discernment frame. Its power set 2� contains all possible subsets 
of the identification framework, which is written as follow:

2� = {∅, {�1} , {�2} , · · · , {�n} , {�1 ∪ �2} , {�1 ∪ �3} , · · · ,�}
(4)

where ∅ represents no obstacle is detected and {�1} describes 
that obstacle �1 is detected.

Definition 4 (Basic probability assignment). The basic probability as-
signment (BPA) is defined to better describe “uncertainty” and 
“unknown”. Assume that each obstacle �i maps to a function 
m (�i) (m (�i) ∈ [0,1]). If m(�) satisfies
of multi-UAV detection.
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m(∅) = 0;m(�) ≥ 0;
∑

�=2�

m(�) = 1, (5)

then m is qualified as a BPA on �, where m(�) indicates the de-
gree of support for evidence, excluding support for any true subset 
of �, and ∅ refers to the empty set, which indicates that no ob-
stacle is detected during the detection process.

Definition 5 (D-S combination rule). After determining the discern-
ment frame, multiple independent sets of BPAs can be fused 
through the following D-S combination rule:

m(�) = k
∑

�1,�2,...,�n⊂�
�1∩�2∩,...�n=�

m1 (�1)m2 (�2) . . .mn (�n) , (6)

for all � ⊂ �, � 	= ∅, �1, �2, . . . , �n ⊂ �, where k is the conflict 
coefficient, which can be expressed as

k =
(

1 − ∑
�1,�2,...,�n⊂�

�1∩�2∩...∩�n=∅

m1 (�1)m2 (�2) . . .mn (�n)

)−1

.

(7)

Definition 6 (Belief and plausibility function). The upper and lower 
bounds of a probability interval are set in accordance with the 
mass assignments. The above interval covers the precise probabil-
ity of an interest set (in the classical sense). It is associated with 
two non-additive continuous measures, including plausibility and 
belief (or support):

B E L(A) ≤ P (A) ≤ P L(A) (8)

The belief B E L(A) in terms of a set A represents the total 
masses of subsets of the interest set:

B E L(A) =
∑

B|B⊆A

m(B) (9)

The plausibility P L(A) is the sum of all the masses of the sets 
B that intersect the interest set A:

P L(A) =
∑

B|B∩A 	=∅

m(B) (10)

The two measures are associated with each other in the follow-
ing:

P L(A) = 1 − B E L( Ā) (11)

where Ā denotes the complementary set of A.

2.4. Detection uncertainty

For depth camera, distortion occurs when it detects obstacles 
due to its inherent characteristics and the errors in manufacturing 
and assembly, leading to detection uncertainty. It is noteworthy 
that the detection accuracy decreases with the increase of the vi-
sual distance L. Additionally, the detection accuracy is affected by 
angular offset, that is, the accuracy decreases with the increase of 
the visual angle α. Thus, the detection accuracy is affected by both 
visual distances and angles.

Ref. [40] has suggested that the detection accuracy of two typ-
ical depth cameras, named Kinect v1 and structure sensor, de-
creases exponentially with the increase of the visual distance. 
Fig. 5 illustrates the data fitting result between detection accuracy 
and visual distance. Accordingly, their qualitative relationship is 
characterized with the exponential distribution, as shown in Fig. 6.
5

Fig. 5. Data fitting between detection accuracy and visual distance.

Additionally, the detection accuracy also indicates a specific dis-
tribution with the visual angle according to [41]. The fitting data 
curve is illustrated in Fig. 7. As shown in Fig. 7, the detection ac-
curacy approximately presents a Gaussian distribution with visual 
distance on a certain distance. Thus, the qualitative relationship 
between detection accuracy of depth camera and visual distance is 
characterized with the Gaussian distribution, as depicted in Fig. 8.

Based on the analysis, we know that the detection accuracy ap-
proximately presents the exponential distribution with visual dis-
tance L and Gaussian distribution with visual angle α. Therefore, 
the exponential function P (L) is adopted to describe the rela-
tionship between detection accuracy and visual distance, and the 
probability density function is defined as f (L). The Gaussian distri-
bution function P (α) is used to describe the relationship between 
detection accuracy and visual angle, and the probability density 
function is defined as f (α). They are mathematically expressed as

f (L) = λe−λL,

f (α) = 1

σ
√

2π
e

−α2

2σ2 ,
(12)

where λ and σ represent the uncertainty coefficient of visual dis-
tance and angle, respectively.

Definition 7 (Detection accuracy). Combining Definition 2 and elim-
inating the effect of constant terms, the static detection accuracy 
is defined as

P A(L,α) = √
2π

σ

λ
· e

− α2

2σ2

σ
√

2π
·λe−λL · δ(L,α) = e

− α2

2σ2 −λL · δ(L,α)

(13)

Note that P A(L, α) is not a probability density function since it 
does not satisfy the basic properties. The purpose of this definition 
is to establish the BPA m. Taking time dimension into considera-
tion, the BPA m in evidence theory is constructed as

m (Lt,αt) = √
2π

σ

λ
· e

− α2
t

2σ2

σ
√

2π
· λe−λLt · δ (Lt,αt)

= e
− α2

t
2σ2 −λLt · δ (Lt ,αt) (14)
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Fig. 6. Qualitative relationship between detection accuracy and visual distance.
Fig. 7. Data fitting between detection accuracy and visual angle.

It can be verified that m (Lt ,αt) satisfies the conditions in (5), thus 
it can be qualified as the BPA. The visual angle αt and the visual 
distance Lt at time t are given by

αt = arctan
L0 tanα0

L0 − vt
,

Lt = L0 − vt,
(15)

where α0 is the visual angle when UAV detects obstacles at initial 
time and L0 is the visual distance at initial time.

3. CSA based on improved D-S evidence theory

Notably, achieving CSA is challenging due to the random-
ness of obstacle distribution and detection uncertainties. In this 
section, an information fusion method is adopted by introduc-
ing and modifying the traditional D-S evidence theory, which is 
presented in Fig. 9. Firstly, the multi-UAV system detects and 
obtains the uncertain information about the obstacles, that is, 
the obstacle position in body-fixed coordinate frame pb

(
� j

) =[
px

b

(
� j

)
, p y

b

(
� j

)
, pz

b

(
� j

)]T
. Subsequently, the ground center

transforms pb (�) into pe (�), fuses the information through D-
S evidence theory, obtains the accurate fusion results P 1,...,n(�)

and disseminates them to the UAVs. Eventually, all UAVs receive 
the results and carry out follow-up decisions. It is worth mention-
ing that the CSA is conducted not only among multiple UAVs, but 
also among different times to achieve a higher detection accuracy.
6

3.1. CSA among multiple UAVs

We now apply the proposed fusion method into the CSA of the 
multi-UAV system. Without loss of generality, the information fu-
sion among UAV I, II and III on OBS I is taken as an example. It 
is assumed that three UAVs detect an obstacle at time t1. The first 
step is to fuse information from all UAVs covering this obstacle. 
Fig. 10 illustrates this process. Additionally, it is worth mention-
ing that contradictory information may occur during the detection 
process. For example, UAV I detects the OBS I with high detection 
accuracy, while UAV II may report that it does not detect OBS I. 
This situation is called the trust paradox. Traditional D-S theory 
cannot deal with the problem and obtain accurate fusion results 
effectively. Thus, several trust paradoxes will be taken into consid-
eration and discussed later.

As depicted in Fig. 10, the three UAVs detect and obtain the 
obstacle position pi(�1) and corresponding BPAs mi(�1) (i =
1, 2, 3) initially, then information fusion is conducted for twice 
to obtain single-fusion results m12

({
p1 (�1)

})
, m12

({
p2 (�1)

})
, 

m23
({

p1 (�1)
})

, m23
({

p2 (�1)
})

, P 12 (�1) and P 23 (�1). Subse-
quently, we continue to fuse the data above and obtain the double-
fusion results m123

({
p1 (�1)

})
, m123

({
p2 (�1)

})
, m123

({
p3 (�1)

})
and p123 (�1).

Based on Fig. 10, the BPAs and position information can be 
fused by

P 123 (�1) =
3∑

i=1

m123 ({pi (�1)}) · pi (�1)

m123
({

pi (�1)
}) (16)

where m123
({

p1 (�1)
})

, m123
({

p2 (�1)
})

and m123
({

p3 (�1)
})

refer to the BPAs, the physical meaning of which is the probabil-
ity of OBS I at p1(�1), p2(�1) and p3(�1), respectively, which are 
written as

m123 ({p1 (�1)}) = 1

k
·

∑
A∩B∩C=p1(�1)

m1(A)m2(B)m3(C)

= 1

k
· {m1 (�1) · [1 − m2 (�1)] · [1 − m3 (�1)]}

(17)

m123 ({p2 (�1)}) = 1

k
·

∑
A∩B∩C=p2(�1)

m1(A)m2(B)m3(C)

= 1

k
· {[1 − m1 (�1)] · m2 (�1) · [1 − m3 (�1)]}

(18)
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Fig. 8. Qualitative relationship between detection accuracy and visual angle.

Fig. 9. Schematic diagram of the multi-UAV system CSA mission.
m123 ({p3 (�1)}) = 1

k
·

∑
A∩B∩C=p3(�1)

m1(A)m2(B)m3(C)

= 1

k
· {[1 − m1 (�1)] · [1 − m2 (�1)] · m3 (�1)}

(19)

where k is written as

k =
∑

A∩B∩C 	=∅

m1(A)m2(B)m3(C)

= m1 (�1) · [1 − m2 (�1)] · [1 − m3 (�1)]

+ [1 − m1 (�1)] · m2 (�1) · [1 − m3 (�1)]

+ [1 − m1 (�1)] · [1 − m2 (�1)] · m3 (�1)

(20)

On that basis, the BPA and coordinate information fusion results 
of UAV I, II and III on OBS I at time t1 are yielded. Subsequently, 
the results are fused with the remaining UAVs, and the overall in-
formation fusion results of OBS I at time t1 under the detection of 
all UAVs are achieved.
7

3.2. CSA among different times

Subsequently, the information fusion among different times is 
conducted to achieve the final CSA. Similarly, the information fu-
sion among time t1, t2 and t3 on OBS I is selected as an example, 
which is illustrated in Fig. 11. Notably, time dimension is consid-
ered in this process, that is, the multi-UAV system flies forward 
and detects the obstacle belt under a fixed time step. Our task 
is to fuse the detection results under different times and obtain 
the CSA result. Moreover, similar trust paradoxes may also happen 
during this step since the detection results under different times 
can be highly contradictory too. The paradoxes will be considered 
and processed through the modifications of the traditional D-S ev-
idence theory.

As shown in Fig. 11, the fusion results in the previous step 
are regarded as the original information of this step, that is, the 
fused obstacle position pti (�1) and corresponding BPAs mti (�1)

(i = 1, 2, 3). Similarly, the obstacle position and BPAs are fused 
through
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Fig. 10. Information fusion among multiple UAVs.

Fig. 11. Information fusion among different times.
P t1t2t3 (�1) =
3∑

i=1

mt1t2t3
({

pti (�1)
}) · pti (�1)

mt1t2t3
({

pti (�1)
}) (21)

The calculation of mt1t2t3
({

pti (�1)
})

(i = 1, 2, 3) and conflict co-
efficient k are similar with Section 3.1, which are mathematically 
expressed as

mt1t2t3
({

pt1 (�1)
})

= 1

k
·

∑
t1

m1(A)m2(B)m3(C)
A∩B∩C=p (�1)

8

= 1

k
· {mt1 (�1) · [1 − mt2 (�1)

] · [1 − mt3 (�1)
]}

(22)

mt1t2t3
({

pt2 (�1)
})

= 1

k
·

∑
A∩B∩C=pt2 (�1)

m1(A)m2(B)m3(C)

= 1

k
· {[1 − mt1 (�1)

] · mt2 (�1) · [1 − mt3 (�1)
]}

(23)

mt1t3t3
({

pt3 (�1)
})
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Table 1
BPA of four pieces of common conflict evidence.

Paradoxes Evidence
Propositions

A B C D E

Complete conflict paradox (1)

m1 1 0 0 \ \
m2 0 1 0 \ \
m3 0.8 0.1 0.1 \ \
m4 0.8 0.1 0.1 \ \

0 trust paradox (2)

m1 0.5 0.2 0.3 \ \
m2 0.5 0.2 0.3 \ \
m3 0 0.9 0.1 \ \
m4 0.5 0.2 0.3 \ \

1 trust paradox (3)

m1 0.9 0.1 0 \ \
m2 0 0.1 0.9 \ \
m3 0.1 0.15 0.75 \ \
m4 0.1 0.15 0.75 \ \

High conflict paradox (4)

m1 0.7 0.1 0.1 0 0.1
m2 0 0.5 0.2 0.1 0.2
m3 0.6 0.1 0.15 0 0.15
m4 0.55 0.1 0.1 0.15 0.1
m5 0.6 0.1 0.2 0 0.1

Table 2
Fusion results of conflict evidence using the D-S evidence theory.

Paradoxes k
BPA of propositions after fusion

D-S Convention
A B C D E

(1) 1 \ \ \ \ \ A
(2) 0.99 0 0.727 0.273 \ \ B A
(3) 0.9998 0 1 0 \ \ B C
(4) 0.9999 0 0.3571 0.4286 0 0.2143 C A
= 1

k
·

∑
A∩B∩C=pt3 (�1)

m1(A)m2(B)m3(C)

= 1

k
· {[1 − mt1 (�1)

] · [1 − mt2 (�1)
] · mt3 (�1)

}
(24)

k =
∑

A∩B∩C 	=∅

m1(A)m2(B)m3(C)

= mt1 (�1)
[
1 − mt2 (�1)

] [
1 − mt3 (�1)

]
+ [

1 − mt1 (�1)
]

mt2 (�1)
[
1 − mt3 (�1)

]
+ [

1 − mt1 (�1)
] [

1 − mt2 (�1)
]

mt3 (�1) (25)

Through this step, the BPAs and coordinate information fusion 
results of all times on OBS I are obtained. Afterwards, the results 
are fused with the subsequent moments, and the overall informa-
tion fusion results of Obstacle I under the detection of all UAVs at 
all times can be obtained to yield the final result of CSA.

3.3. Defects of the conventional D-S evidence theory

Conventional D-S evidence theory is capable of dealing with 
the uncertainties in CSA to a certain degree, whereas it still has 
limitations in processing evidence with complete or high conflict. 
A complete conflict example is presented as follows to illustrate 
the limitations.

It is assumed that two UAVs detect an obstacle and obtain its 
position p1 and p2, respectively. Thus, the discernment frame can 
be expressed by � = {p1, p2}, and the detection results of the two 
UAVs are written as

UAV I: m1
(

p1
) = 0,m1

(
p2

) = 1;
UAV II: m2

(
p1

) = 1,m2
(

p2
) = 0.

(26)

Conflict coefficient k = 1 is obtained through calculation, thus 
suggesting that two sources of evidences are of complete conflict. 
9

Besides, the numerator is zero in accordance with the combination 
rule in Eq. (5), thus suggesting that the formula is invalid, and that 
information fusion cannot be achieved.

For evidence with high conflict, the fusion results of D-S ev-
idence theory also often violate common sense. Table 1 presents 
BPAs of four pieces of common conflict evidence, and Table 2
presents the fusion results.

(1) Complete conflict paradox: the example above has explained 
that conventional D-S evidence theory is invalid when k = 1.

(2) 0 trust paradox: the conflict coefficient can be calculated as 
k = 0.99. It can be checked that because evidence m3 to-
tally denies proposition A, the BPA for proposition A in the 
synthesis results will always be zero no matter how strongly 
evidence m1, m2 and m4 support proposition A. That is, D-S 
combination rule has the disadvantage of one ballot veto.

(3) 1 trust paradox: the conflict coefficient can be calculated as 
k = 0.9998. Although all sources of evidence give small BPAs to 
proposition B , the synthesis results completely believe propo-
sition B is the correct proposition, which is per-verse in prac-
tical application.

(4) High conflict paradox: the total conflict factor can be calcu-
lated as k = 0.9999. It can be proved in a similar way that 
precise synthesis results should support proposition A as ev-
idence m1, m3, m4 and m5 all give proposition A large BPAs. 
However, high conflicts in the above evidence cause erroneous 
reasoning.

Since the combination of conventional D-S evidence often fails 
due to the particularity of some propositions and the existence of 
conflicting propositions, scholars have developed several improved 
methods from the perspective of modifying the source of evidence, 
the core of which are to redistribute the weight of each evidence 
according to their relevance and conflict. Nevertheless, most of 
them ignored the significance of BPA in the original propositions. 
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Fig. 12. The flow chart of improved evidence combination method.
Thus, we analyze and improve the BPA of the original evidence, 
and then adopt the D-S combination rule to ensure the integrity of 
the improved D-S evidence theory.

3.4. Improved information fusion method towards high conflict 
evidence

3.4.1. Similarity measure based on Pearson correlation coefficient
Denote m1 and m2 as two evidence bodies based on the dis-

cernment frame �. Then the correlation between the two pieces 
of evidence can be calculated according to

ρ12 = cov (m1,m2)

σm1σm2

= E
((

m1 − μm1

) (
m2 − μm2

))
σm1σm2

(27)

where ρ12 refers to the Pearson coefficient between m1 and m2, 
cov (m1,m2) indicates the covariance between two pieces of evi-
dence, E(mi) denotes the mathematical expectation of mi ; μmi and 
σmi are mathematically expressed by

μmi = E (mi)

σ 2
mi

= E((mi − E (mi))
2)

= E
(

m2
i

)
− E2 (mi) .

(28)

The range of Pearson coefficient is [−1, 1]. Negative values indicate 
negative correlation, and smaller negative values mean higher neg-
ative correlation. Moreover, the Pearson coefficient less than zero 
is modified as zero in order to satisfy the non-negative condition 
of correlation coefficient as well as to reduce the effect of negative 
value on basic probability. Therefore, the modified Pearson coeffi-
cient ρM

(
mi,m j

)
between mi and m j can be described by

ρM
(
mi,m j

) =
{
ρi j, if ρi j ≥ 0,

0, otherwise.
(29)

Lemma 1. The following properties are satisfied for ρM
(
mi,m j

)
.

1) 0 ≤ ρM
(
mi,m j

) ≤ 1.
2) ρM

(
mi,m j

) = ρM
(
m j,mi

)
.

3) ρM
(
mi,m j

) = 1 ⇔ m j = ami + b, where a and b are constants.

Proof. The proof of Lemma 1 is reported in Appendix A. �

3.4.2. Uncertainty measure based on evidence interval probability
The method in Section 3.4.1 only considers the correlation be-

tween the evidence and evaluates the evidence from merely one 
10
perspective, which is not comprehensive enough. On that basis, ev-
idence uncertainty is introduced, and conflicting evidence is mod-
ified in different aspects.

Evidence theory suggests that the confidence interval [B E L(�),

P L(�)] can be determined in accordance with BPA, and the inter-
val confidence of all single-element subsets can be considered as 
the interval probability. For BPA based on the discernment frame 
� = {�1,�2, · · · ,�n}, all the confidence intervals constitute the 
interval probability distribution on �. Moreover, the uncertainty of 
interval probability (e.g., the uncertainty of evidence) comprises in-
consistency and imprecision. Thus, confidence interval is employed 
for qualification. The median value P L(�i)+B E L(�i)

2 of all interval 
probabilities is employed to obtain the inconsistency, and the in-
terval length P L (�i) + B E L (�i) is used to obtain the inaccuracy. 
Based on this idea, a novel uncertainty measure is introduced.

For each given evidence bodies, we are able to obtain their be-
lief B E L and plausibility P L through Eq. (9) and (10). Then the 
uncertainty degree Un(m) of BPA m can be mathematically ex-
pressed by

Un(m) =
n∑

i=1

[
− B E L (�i) + P L (�i)

2

· log2
B E L (�i) + P L (�i)

2
+ P L (�i) − B E L (�i)

2

]
(30)

3.4.3. A novel evidence weight assignment method
In this study, the Pearson coefficient is adopted to build the 

correlation measure between different pieces of evidence and de-
termines the evidence credibility, whereas evidence uncertainty is 
considered comprehensively. The result of the analysis suggests 
that evidence credibility represents the degree of its support by 
other evidences, and evidence uncertainty represents the degree 
of conflict between it and other evidences. Thus, the weight of 
the evidence with high credibility should be increased and the 
weight of the evidence with high uncertainty should be reduced 
during the evidence combination. Accordingly, this study combines 
the credibility and uncertainty to determine the weight coefficient 
of the evidence, revise the original evidence, weighted average the 
BPA of the revised evidence, and then use the D-S combination 
rule to fuse it, so as to solve the evidence conflict. The flow chart 
of the improved method is illustrated in Fig. 12.

1) Calculate the modified Pearson coefficient ρM (mi, m j) between 
two evidences and establish the correlation matrix S :
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Table 3
Simulation parameters setting.

Item Parameter Item Parameter

Obstacle space 300 m × 200 m × 100 m �t 1 s
nOBS From 20 to 100 λ 0.6
nUAV 5 σ 1

v i = [
vx

i , v y
i , vz

i

]T [20,0,0]T m/s Ls 0 ∼ 550 m
Velocity direction Positive X axis θs −45◦ ∼ +45◦

S =

⎡
⎢⎢⎢⎣

ρM (m1,m1) . . . ρM (m1,mn)

ρM (m2,m1) . . . ρM (m2,mn)
...

. . .
...

ρM (mn,m1) . . . ρM (mn,mn)

⎤
⎥⎥⎥⎦ (31)

2) Calculate the support degree Sup(mi) of evidence mi . Note that 
Sup(mi) may be zero due to high evidence conflict. As a result, 
the denominator will be zero too in step 3) and subsequent 
calculation. Thus, we modify and assign Sup(mi) to a small 
number ε(ε = 0.001 in this study) if it is zero.

Sup (mi) =
n∑

j=1, j<i

ρM
(
mi,m j

)
(32)

3) Calculate the credibility Crd(mi) through

Crd (mi) = Sup (mi)∑n
i=1 Sup (mi)

(33)

4) Calculate the uncertainty degree Un(mi) of each evidence ac-
cording to Eq. (30).

5) Obtain the weight according to evidence credibility Crd(mi)

and uncertainty Un(mi). Denote w(i) as the weight of evi-
dence, then it can be calculated by

w(i) = Crd (mi) × eUn(mi)∑n
j=1

(
Crd

(
m j

) × eUn
(
m j

)) (34)

6) Weighted average the original evidence using the normalized 
weight coefficient and obtain the modified evidence mi by

mi =
n∑

i=1

(w(i) × mi) (35)

7) Combine the weighted average evidence mi for n − 1 times 
using the D-S combination rule and obtain the results.

4. Case study

In this section, we give three simulation cases and correspond-
ing analyses. The first case is the comparison between our CSA 
scheme of the multi-UAV system and SA of a single UAV, which 
verifies the feasibility of the method. The second case is the appli-
cation of the CSA method under flexible formation shapes, which 
demonstrate the scalability and universality of the method in prac-
tice. The third case is the comparison of performances between 
the modified algorithm and four existing methods, which validates 
the superiority of our method. The simulations are conducted with 
MATLAB software on Windows 10 system, while the obstacles are 
randomly distributed in a given 3D space using the Monte Carlo 
stochastic modeling method. The average time of simulation is 
3.284 s, and the simulation parameters are set as Table 3.

4.1. Comparison between the CSA of the multi-UAV system and SA of a 
single UAV

The CSA of the multi-UAV system under a specific formation 
shape is conducted first. The purpose of this case study is to verify 
11
Fig. 13. Distribution of UAVs and obstacles under a certain formation shape.

Table 4
Quantitative comparison results between SA of a single UAV and CSA.

nOBS Method Detected obstacles Average detection accuracy

20
SA 10 33.18%
CSA 20 93.85%

40
SA 23 41.25%
CSA 40 90.87%

60
SA 38 39.47%
CSA 60 87.33%

80
SA 42 32.41%
CSA 79 82.66%

100
SA 39 17.52%
CSA 98 79.09%

that a multi-UAV system can detect obstacles more widely and ac-
curately using our developed CSA method, compared with SA of a 
single UAV. The distribution of multi-UAV system and obstacles is 
shown in Fig. 13. Note that the formation shape (called Formation 
I) is fixed, while the number and distribution of obstacles are both 
different in each test.

The comparison between the SA of a single UAV and CSA of the 
multi-UAV system is illustrated in Fig. 14(a) and Fig. 14(b). Note 
that the circles are obstacles, while shades of color represent the 
degree of detection accuracy. Besides, the number of obstacles nOBS
is set as 20.

Fig. 14(a) depicts the SA result of a single UAV for a single sam-
pling time, which shows that only a few obstacles are detected, 
whereas the detection accuracy is generally low. As depicted in 
Fig. 14(b), the improved CSA method of the multi-UAV system can 
significantly detect more obstacles while being aware of the ob-
stacles more accurately, with an average detection accuracy above 
90%. Next, we extend the number of obstacles nOBS to 40, 60, 80 
and 100, respectively and obtain the CSA result of the multi-UAV 
system in Fig. 15 and Table 4.

According to the CSA results illustrated in Fig. 15 and quantita-
tive comparison results expressed in Table 4, our CSA scheme can 
improve both the quantity and quality of obstacle detection. Com-
pared with SA of a single UAV, the CSA of the multi-UAV system 
can detect twice the number of obstacles, and the average detec-
tion accuracy is also 40% ∼ 50% higher. Even when nOBS increases 
to 100, our scheme can still detect most obstacles and maintain the 
average detection accuracy at about 80%. Possible reasons include 
that the proposed CSA scheme has a wider detection range and 
can improve detection accuracy through information interaction 
and fusion. The results validate the effectiveness and superiority 
of the proposed CSA method.
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Fig. 14. Comparison of detection accuracy between SA of a single UAV and CSA.

Fig. 15. CSA results of the multi-UAV system with different obstacle numbers.
4.2. CSA under flexible formation shapes

In this section, the CSA results are extended for multiple times 
of sampling and the dynamic variation of detection accuracy is 
evaluated. Furthermore, to verify the scalability of the developed 
method, we fix the obstacle number nOBS (the obstacle distribution 
is still random) and apply five formation shapes into the multi-UAV 
system, as shown in Fig. 16.

Additionally, to better illustrate the dynamic process of the 
multi-UAV system detecting obstacles, we divide the obstacle re-
gion into three parts, as shown in Fig. 17. The regions covered by 
red solid line, black dotted line and blue dashed line are accord-
ingly the Area I, II and III. It is worth noting that the five forma-
tions are drawn on different planes in order to be distinguished, 
while they remain on the same plane during the simulation. Same 
as the above setting, all the multi-UAV systems fly forward at a 
12
constant speed of 20 m/s along the X-axis. The detection accuracy 
of the three areas is illustrated in Fig. 18.

As depicted in Fig. 18, after multiple fusions, all formations can 
complete the detection in the three areas with high detection accu-
racy, whereas Formation I achieves a maximum detection accuracy 
of 96.58% in Area I. Such an improvement is due to more sparse 
distribution, wider detection range and no mutual obstruction of 
view.

Note that the trends in detection accuracy in the three areas are 
not consistent. In Area I, the detection accuracy of all formations 
increases rapidly with the increase in sampling times. However, in 
Area II, the detection accuracy of Formations III, IV, and V oscillates 
slightly at first and increases gradually after the third sampling 
time. In Area III, all formations start to detect obstacles after the 
fourth sampling time. Afterwards, the detection accuracy of all for-
mations oscillates locally but shows an overall increasing trend. 
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Fig. 16. Five formation shapes.
Fig. 17. Distribution of UAVs and obstacles under flexible formations.

Possible reason includes the relative distance between the obstacle 
area and the multi-UAV system. Area I is closest to the multi-UAV 
system and may already be within the detection range of the depth 
camera, while the obstacles in Area III may not be detected dur-
ing the first few sampling times. In addition, Formation I has the 
widest overall detection range, and the view of each UAV in the 
system is not obscured by other UAVs. Thus, the detection accu-
racy of Formation I shows a distinguishing increase among the five 
formations.

It is worth mentioning that all formations can finally main-
tain a relatively high detection accuracy (above 80%) after our CSA 
scheme is applied, which validates the effectiveness and scalability 
of the proposed method.

4.3. Comparison between the improved algorithm and existent methods

The advantages of the improved method in this study are veri-
fied under the given recognition framework and evidence. We take 
four paradoxes described in Section 3.3 as examples to discuss the 
rationality and validity of the modified algorithm. The BPAs of four 
common paradoxes are illustrated in Fig. 19.
13
Fig. 19 suggests that evidence during the CSA process can be 
divided into consistent evidence and conflicting evidence. Appar-
ently, the relatively consistent evidence includes m1, m3, and m4
in complete conflict paradoxes, m1, m2, and m4 in 0 trust para-
dox, m2, m3, and m4 in 1 trust paradox, and m1, m3, m4 and m5
in high conflict paradox. Thus, accurate synthesis results should 
agree with the above consistent evidence while being away from 
conflicting evidence.

Notably, the conventional D-S combination rule cannot manage 
all four paradoxes. In this study, four existing improved methods 
developed by Yager [33], Sun et al. [34], Murphy [35], and Li et al. 
[37] (called Yager, Sun, Murphy, and Li for short) are selected for 
comprehensive analyses with the improved method (called Im-
proved for short). The synthesis results are presented in Table 5
and Fig. 20. According to the results, the following discussions are 
conducted.

(1) Complete conflict paradox: m1, m3, and m4 are the relatively 
consistent evidence. Yager gives the uncertain domain � the 
whole belief as m(�) = 1, which, on the contrary, increases 
propositions’ uncertainty. Sun only solves part of the conflicts 
as the BPAs of propositions A, B , and C match the BPAs’ pro-
portion of the above consistent evidence, whereas the BPA for 
� remains high as m(�) = 1, which still has high uncertainty. 
Furthermore, Murphy, Li, and Improved get relatively accurate 
results for complete conflict paradoxes.

(2) 0 trust paradox: m1, m2, and m4 are the relatively consis-
tent evidence. It is easy to check that the consistent evidence 
is the same, such that the most valid algorithm should have 
the minimum difference between the synthesis results and the 
consistent evidence. As can be seen intuitively, Yager presents 
totally wrong results, and Improved is the most effective algo-
rithm in this kind of paradox.

(3) 1 trust paradox: m2, m3, and m4 are the relatively consistent 
evidence. Yager and Sun cannot solve this paradox practically, 
which can be demonstrated in a similar way to the discussion 
of Case (1). Furthermore, Murphy, Li, and Improved are capable 
of managing 1 trust paradox to different degrees.

(4) High conflict paradox: m1, m3, m4, and m5 are the relatively 
consistent evidence. Yager and Sun are logical theoretically but 
cannot be put into practice because of their increasing uncer-
tainty. Murphy, Li, and Improved all produce relatively reason-
able results in this kind of paradox.
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Fig. 18. Fusion results of the three areas.

Fig. 19. BPAs of four common paradoxes.
14
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Fig. 20. Comparison of the fusion results.
The propositions with four kinds of evidence conflicts in Ta-
ble 5 should be A AC A. The fusion results using the developed 
method can identify the corresponding propositions with the max-
imum BPAs. The results are consistent with common sense and 
are valid for all four kinds of conflicts. Moreover, it can be con-
firmed that Yager will generate incorrect results of synthesis based 
on paradoxes, and it is unable to handle any kind of paradox. Sun
allocates most of the conflicts directly to �, which only solves 
paradoxes theoretically. It is not suitable for practical application 
because of the increasing uncertainty of synthesis results. Murphy
averages all evidence without separating consistent evidence and 
conflicting evidence. Besides, it is not capable of solving paradoxes 
since evidence has an inconsistent contribution to the results of 
synthesis, regardless of its simple computation. Thus, only Li and 
Improved can generate relatively reasonable synthesis results for 
all the above four common paradoxes. Besides, by comparing the 
BPA obtained by the algorithm in Table 5, we obtain that the Im-
proved algorithm has the highest identification BPA for reasonable 
15
propositions, which proves that our method performs better than 
all other algorithms in solving the four conflicts above.

5. Conclusion and future work

Based on the background of UAV detection, this study applies 
the improved D-S evidence theory to the CSA of the multi-UAV 
system to conduct the information fusion detected by airborne 
sensors, which demonstrates superior performance on dealing with 
detection uncertainty. Compared to the SA of a single UAV, the 
proposed CSA scheme for the multi-UAV system is able to detect 
more obstacles and perceive the obstacles more accurately, with a 
40% ∼ 50% higher average detection accuracy. In the case study of 
CSA under flexible formation shapes, the detection accuracy under 
different formation shapes is illustrated by a diagram of curves. 
The uncertainty of fusion results decreases, and the accuracy in-
creases as more pieces of information are fused. Additionally, com-
pared to existing methods based on the modified D-S evidence 



Z. Liao, S. Wang, J. Shi et al. Aerospace Science and Technology 142 (2023) 108605

Table 5
Comparison of the combination results.

Paradoxes Methods
Propositions

A B C D E F

(1)

Yager 0 0 0 \ \ 1
Sun 0.0917 0.0423 0.0071 \ \ 0.8589
Murphy 0.8204 0.1748 0.0048 \ \ 0
Li 0.9242 0.0502 0.0256 \ \ 0
Improved 0.9998 0.0001 0.0001 \ \ 0

(2)

Yager 0 0.7273 0.2727 \ \ 0
Sun 0.0525 0.0597 0.0377 \ \ 0.8501
Murphy 0.4091 0.4091 0.1818 \ \ 0
Li 0.4679 0.2800 0.2521 \ \ 0
Improved 0.8655 0.0223 0.1122 \ \ 0

(3)

Yager 0 1 0 \ \ 0
Sun 0.0388 0.0179 0.0846 \ \ 0.8587
Murphy 0.1676 0.0346 0.7978 \ \ 0
Li 0.0791 0.0743 0.8466 \ \ 0
Improved 0.0001 0.0010 0.9989 \ \ 0

(4)

Yager 0 0.3571 0.4286 0 0.2143 0
Sun 0.0443 0.0163 0.0136 0.0045 0.0118 0.9094
Murphy 0.7637 0.1031 0.0716 0.0080 0.0538 0
Li 0.6320 0.1227 0.1171 0.0316 0.0967 0
Improved 0.9991 0.0001 0.0006 0 0.0002 0
theory, our modification shows a better performance in improv-
ing the detection accuracy and achieving an accurate CSA of the 
multi-UAV system.

Nevertheless, the D-S evidence theory still has limitations such 
as high dependence on original data and lack of solid theoretical 
foundations. Thus, future work will include heterogeneous multi-
sensor fusion, and further improvement of other information fu-
sion methods (e.g. Evidential Reasoning, ER) will also be consid-
ered.
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Appendix A. Proof of Lemma 1

Proof. The three properties for ρM(mi, m j) are proved as follows.
For property 1), we firstly prove the range of ρi j . According to 

Cauchy-Schwarz inequality, we have[
E

(
mi · m j

)]2 ≤ E
(

m2
i

)
E

(
m2

j

)
(A.1)

Substituting mi with mi − μmi , m j with m j − μm j , we obtain[
E

((
mi − μmi

) (
m j − μm j

))]2

≤ E((mi − E (mi))
2)E(

(
m j − E

(
m j

))2
) (A.2)

According to (27), we can rewrite (A.2) as
16
[
E

((
mi − μmi

) (
m j − μm j

))
σmi σm j

]2

= ρ2
i j ≤ 1 (A.3)

which is equivalent to

−1 ≤ ρi j ≤ 1 (A.4)

Then, it follows from (29) that

ρM
(
mi,m j

) =
{
ρi j ∈ [0,1], if ρi j ≥ 0,

0, otherwise.
(A.5)

This completes the proof of property 1).
For property 2), we only consider the case of ρi j ≥ 0, since 

ρM
(
mi,m j

)
is zero in the other case. Synthesizing (27) with (28)

yields

ρM
(
mi,m j

) = E
((

mi − μmi

) (
m j − μm j

))
E((mi − E (mi)))E(

(
m j − E

(
m j

))
)

= E
((

m j − μm j

) (
mi − μmi

))
E(

(
m j − E

(
m j

))
)E((mi − E (mi)))

= ρM
(
m j,mi

)
(A.6)

which completes the proof of property 2).
For property 3), we prove its sufficiency (from left to right) 

firstly, with the consideration of case ρi j ≥ 0 (ρM
(
mi,m j

)
is zero 

if ρi j < 0). Due to ρM
(
mi,m j

) = ρi j = 1, two standardized versions 
of mi and m j are defined as

U = mi − E (mi)

σmi

, V = m j − E
(
m j

)
σm j

(A.7)

Then,

ρi j = Cov (U , V ) = Cov

(
mi − E (mi)

σmi

,
m j − E

(
m j

)
σm j

)

= Cov

(
mi

σmi

,
m j

σm j

)

= Cov
(
mi,m j

)
σ σ

(A.8)
mi m j



Z. Liao, S. Wang, J. Shi et al. Aerospace Science and Technology 142 (2023) 108605
Using the following inequality

αβ ≤ α2 + β2

2
, ∀α,β ∈R (A.9)

This is because (α−β)2 ≥ 0. The equality holds only if α = β . From 
this, we can obtain that for any two random variables U and V ,

E[U V ] ≤ EU 2 + E V 2

2
, (A.10)

where the equality holds only if U = V with probability one. 
Now, let U and V be the standardized versions of mi and m j as 
defined in (A.7). Then, we have ρi j = Cov(U , V ) = E[U V ]. Since 
EU 2 = E V 2 = 1, we can derive

ρi j = E[U V ] ≤ EU 2 + E V 2

2
= 1 (A.11)

where the equality holds only if U = V , i.e.,

mi − E (mi)

σmi

= m j − E
(
m j

)
σm j

(A.12)

which implies

m j = σm j

σmi

mi +
(

E(m j) − σm j

σmi

E(mi)

)
= ami + b,

(A.13)

where a = σm j /σmi and b = (E(m j) − σm j /σmi E(mi)) are con-
stants. This completes the proof of sufficiency of property 3). The 
proof of necessity is the reverse process of the above. Note that 
ρM

(
mi,m j

) = 1 implies that m j is highly linear with mi , i.e., evi-
dences mi and m j are mutually supportive. So far, we have com-
pleted the proof of three properties. �
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